
SYNTACTIC TABULAR FORM PROCESSING
BY PRECEDENCE ATTRIBUTE GRAPH GRAMMARS

TOMOKAZU ARITA † KIMIO SUGITA†† KENSEI TSUCHIDA††† TAKEO YAKU †

Dept. App. Math.†

Nihon University
3–25–40, Sakurajosui, Setagaya, Tokyo, 156-8550, Japan

Dept. Math.††

Tokai University
1117, Kitakaname, Hiratsuka, Kanagawa, 259–1292, Japan

Dept. Inf. & Comp. Sci.†††

Toyo University
2100, Kujirai, Kawagoe, Saitama, 350–8585, Japan

Abstract We deal with mechanical documentation in soft-
ware development. First, we introduce a mathematical
model, called precedence attribute NCE graph grammars,
for mechanical documentation. Next we introduce syntac-
tic definition of nested tabular forms by an attribute NCE
graph grammar, and show that the grammar has precedence
property. Furthermore, we introduce parsing methods for
nested tabular forms.
Keywords Software Methodologies, Software Documen-
tation, Graph Grammars

1 INTRODUCTION

Mechanical documentation such as automatic drawing and
editing of software specification (see e.g. [2]) forms is
considered one of the important issues in software devel-
opment tools.

Software documents include tabular forms such as soft-
ware specification forms and diagrams such as program
flowcharts. Furthermore, the tabular forms are classified
into (1) nested structured form in which items are linked
hierarchically to each other, and (2) tessellation structured
form such as symbol tables and spread sheets (see e.g. [8]).
This paper deals with nested structured form and its me-
chanically manipulating problems.

In mechanical documentation, it is necessary to for-
mally define tabular forms and the drawing conditions.
Tabular forms generally have infinitely many items inside.
And the order and the location of the items are valid. Ac-
cordingly, syntactic definition is effective in mechanical
manipulation of the tabular forms. Attribute graph gram-
mars also formulate universally syntactic structure and the
visual structure among items in the tabular forms by at-
tributed productions.

Franck [1] introduced precedence graph grammars and
applied them to nested program diagrams called PLAN2D.

Nishino [4] introduced an attribute graph grammar with re-
spect to a drawing problem of tree-like diagrams and for-
malized transformation of tree-like diagrams. In [4], the
drawing problems were specified by semantic rules of at-
tributes. We have also studied syntactic and algorithmic
manipulation of diagrams [12] [11], [10], [6]. We for-
mulated hierarchical structured program diagram by an at-
tribute graph grammar [6]. In 2000, we partly introduced
a syntactic definition of software specification forms based
on ISO6592 standard using graph grammars [12].

The purpose of this paper is to characterize graph gram-
mars which provide formal definition of program speci-
fication forms with respect to syntactic manipulation and
mechanical drawing. In Section 2, we review a program
specification form. In Section 3, we introduce a prece-
dence attribute NCE graph grammar as a model. In Sec-
tion 4, we introduce an attribute NCE graph grammar for
program specification forms and show that the grammar
has precedence property. Section 5 provides parsing algo-
rithms. Section 6 provides conclusions.

2 PROGRAM DOCUMENTATION LAN-
GUAGE

We review here a program documentation lanuageHiform.
Hiform was originally developed for the purpose of assist-
ing the programming education. We took the ISO6592
items into consideration and introduced Hiform which in-
cludes all items defined in Annexes of ISO6592 [3]. Hi-
form is defined by 17 different types of tabular forms [9].
The following Fig. 2.1 shows a Hiform program documen-
tation form.

We employ a marked graph as an expression of a tabu-
lar form. We introduce below a marked graph which repre-
sents a tabular form. Amarked graphis defined as follows:
(1)A node labelof graph shows anitemof a tabular form.

Project Code: A 5
Program Name: Program Specification-1
Library Code:

Author:

Approver:

Problem Description:

Problem Supplementary Information
(Theoretical Principles, Methods and References):

Problem Solution:
1.Conventions and Terminology
2.Principles and Algorithms

Version:

Original Release:

Current Release:

Fig.2.1 A Hiform Document

program name :
subtitle :
library code :
author :
approver :

version :
original release :
current release :

A Tabular Form

program name :
subtitle :
library code :
author :
approver :

version :
original release :
current release :

A Corresponding Nested Graph

program name

subtitle

library code

author

approver

original release

current release

version

in
in
ov

ov

ov

ov

lf

lf

lf
A Corresponding Marked Graph

Fig. 2.2 A Tabular Form, a Nested Graph
 and a Marked Graph

A node label is called amark. (2)An edge labelshows
relations between items. ‘lf’ denotes the meaning of ‘left
of’. ‘ov’ denotes the meaning of ‘over’. ‘in’ denotes the
meaning of ‘within’ [1]. Fig. 2.2 shows an expression of a
tabular form.

3 ATTRIBUTE NCE GRAPH GRAMMAR

In this section, we introduce attribute NCE graph gram-
mars. We note that Franck’s graph grammars could not rep-
resent general tabular forms such as tessellation forms [12],
since the graph grammar could not execute edge rewriting.
We consider here universal models which are commonly
applied to general tabular forms. For this purpose, we em-
ploy edNCE graph grammars and introduce the following
models. However, it is noted that Franck’s graph grammar
has capability to formalize tabular forms if the forms are
restricted to “nested” type we deal with later.

3.1 ATTRIBUTE NCE GRAPH GRAM-
MARS

We add attributes to edNCE graph grammars and introduce
an attribute NCE graph grammar, as following.

Definition 3.1.1 [7] An edNCE graph grammaris a 6–
tupleG = (Σ,∆, Γ,Ω, P, S), whereΣ is thealphabetof
node labels,∆ ⊆ Σ is the alphabet ofterminalnode labels,
Γ is the alphabet of edge labels,Ω ⊆ Γ is the alphabet of
final edge labels,P is the finite set ofproductions, and
S ∈ Σ −∆ is the initial nonterminal. A production is of
the formX → (D,C) with X ∈ Σ−∆, D is a graph over
theΣ andΓ, andC ⊆ Σ× Γ × Γ× VD × {in, out} is the
connection relation, whereVD is a set of nodes onD. 2

Definition 3.1.2 An attribute NCE graph grammaris a
3–tupleAGG = 〈G,Att, F 〉, where

1. G = (Σ,∆, Γ,Ω, P, S) is called anunderlying graph
grammarof AGG. Each productionp in P is denoted by
p = X → (D,C). Lab(D) denotes the set of all occur-
rences of the node symbols labeling the nodes in the graph
D.

2. Each node symbolY ∈ Σ of G is associated with two
disjoint finite setsInh(Y) andSyn(Y) of inheritedand
synthesized attributes, respectively. We denote the set of
all attributes of nonterminal node symbolsX by Att(Y) =
Inh(Y) ∪ Syn(Y). Att =

⋃
Y ∈V Att(Y) is called the set

of attributes ofAGG. We assume thatInh(S) = ∅. An
attributea of Y is denoted bya(Y), and set of possible

values ofa is denoted byV (a).
3. Associated with each productionp = X0 →

(D,C) ∈ P is a setFp of semantic ruleswhich de-
fine all the attributes inSyn(X0) ∪

⋃
Y ∈Lab(D) Inh(Y).

A semantic rule defining an attributea0(Xi0) has the
form a0(Xi0) := f(a1(Xi1), ..., am(Xim)), 0 ≤ ij ≤
|Lab(D)|, Xij ∈ Lab(D), 0 ≤ j ≤ m. Here |Lab(D)|
denotes the cardinality of the setLab(D), andf is a map-
ping fromV (a1(Xi1)× ...× am(Xim)) into V (a0(Xi0)).
In this situation, we say thata0(Xi0) depends onaj(Xij)
for j, 0 ≤ j ≤ m in p. The setF =

⋃
p∈P Fp is called the

set of semantic rulesof AGG. 2

3.2 PRECEDENCE RELATIONS

We modify the Franck’s precedence relations [1] on
Franck’s context-free graph grammar and propose prece-
dence relations on edNCE graph grammars for efficient
parsing. In this part, we deal with a following edNCE
grammar. LetG be an edNCE grammar. All production
of G is of the formX → (D,C) and∀(σ,α, α, x, d) ∈ C
(with σ ∈ Σ, α ∈ Γ, x ∈ VD, andd ∈ {in, out}).

Notation 3.2.1 For everym ∈ Γ and∀# ∈ Σ let

.=m
def=

(A,B)

P 3 p : X → (D,C),
there is an edge(x, y) onD
wherex is markedA,
y is markedB and
(x, y) is labeledm.

→m
def=

(A,B)

P 3 p : A→ (D,C),
C 3 (#, m, m, x, in),
and the mark ofx is B.

←m
def=

(B,A)

P 3 p : A→ (D,C),
C 3 (#, m, m, y, out),
and the mark ofy is B.

2

Notation 3.2.2 [1] For every m ∈ Γ let <·m def
=

.=m · +→m, ·>m
def
= +←m · .=m, and <·>m

def
=

+←m · .=m · +→m, where + denotes transitive closure.
2

Definition 3.2.3 Precedence relations areconflictless if
and only if for everym ∈ Γ the relations<·m,

.=m, ·>m and
<·>m are pairwise disjoint [1]. 2

Definition 3.2.4 [1] A context-free attribute NCE graph
grammar is called aprecedence attribute NCE grammar
if and only if (i) the precedence relations are conflictless,
(ii) all rules are uniquely invertible, and (iii) there is no
reflexive nonterminal symbol in the grammar. 2

A language is called a precedence attribute NCE graph
language if it is generated by a precedence attribute NCE
graph grammar.

4 AN ATTRIBUTE GRAPH GRAMMAR
FOR HIFORM

We propose an attribute graph grammar which character-
izes the Hiform documents. The grammar is calledHiform
Nested Graph Grammar(HNGG). We show productions of
HNGG in Fig. 4.1 HNGG consists of 280 productions.
The label of the start graph is “[struct].” We also con-
struct 1248 attribute rules of HNGG as shown in Fig. 4.1
Each production is associated with attribute rules. These
attribute rules are mainly used for evaluating the positions
and the sizes of items. The set of all productions is in [13].

Proposition 1 The grammar HNGG above is a precedence
attribute NCE graph grammar.
Proof. We can construct 5376 relations over the marks in
HNGG as shown in Fig. 4.3 The relation are shown to be
pairwise disjoint. 2

5 PARSING OF PRECEDENCE AT-
TRIBUTE NCE GRAPH LANGUAGE

5.1 SYNTACTIC ANALYSIS

We introduce an outline of parsing algorithms (cf. [1]).
The algorithm ‘parser’ includes repetition of the algo-

rithm ‘reduce’ while an input graph to the algorithm ‘re-
duce’ is not a start graph of the graph grammar. An algo-
rithm ‘reduce’ finds a handle in input graph and replace this
handle to new node which has a mark of left hand side of
a production for this handle. (a handle is a graph which is
isomonophic for a graph in a right hand side of a produc-
tion.)

The ‘reduce’ seeks for a handle in inputted graph by an
algorithm ‘seekForHandle’ in the first step. A handle is
found by using the precedence table. In the second step,
the handle is replaced by a new node which mark is a left
hand side of production for this handle by calling an algo-
rithm ‘replaceHandleToLeftHandSideOfProduction’. Fi-
nally, ‘reduce’ returns a graph replaced by a handle.

The algorithm ‘replaceHandleToLeftHandSideOfPro-
duction’ is consists of 4 steps. It is necessary for this al-
gorithm to input a graph and a handle in the graph. First,
the handle is removed from the graph by calling ‘move-
HandleFormGraph’. Second, a production for the handle is
searched by calling ‘searchProduction’. Third, derivation
subtree is made by the handle and the production by call-
ing ‘makeDerivationTree’. Finally, a new node is embeded
in the graph by ‘embedLeftHandSideToGraph’. This new
node’s mark is the left hand side of the production.

Algorithm parser
Input: Marked Graph and Precedence Table
Output: Derivation Tree

Method
void parser(MarkedGraph graph, PrecedenceTable ptable){

while(a mark of any node in graph is not startgraph){

[head column]

[head row]

[head root]

ov

ov
[head column]

[head row]

[head root]

ov

ov

[head scalar]

lf

H5

Fig. 4.2 An example of applying a production

Fig. 4.1 Productions of HNGG

head
root[]

in/in
ov/ov

in

HEAD 1 2

[head]
0

H1

head
root[]

in/in
ov

ov/ov

[]head
row 1

2

H2 [head root]
0

ov/ov

lf
in/in

ov/ov

lf/lf

[]head
scalar

[]head
column

1

2

[head column]
0

H5

x(1) = x(0), x(2) = x(0),
y(1) = y(0), y(2) = y(0),
width(0) = width(2),
height(0) = height(2)

x(1) = x(0), x(2) = x(0),
y(1) = y(0),
y(2) = y(0)+height(1),
width(0)
= max(width(1), width(2)),
height(0)
= height(1) + height(2)

x(1) = x(0),
x(2) = x(0)+width(1),
y(1) = y(0), y(2) = y(0),
width(0)
= width(1)+width(2),
height(0) =
max(height(1)+height(2))

[head row]

in ov lf in ov lf in ov lf in ov lfLeft
Right

[head column]

[head scalar]

[head root][head row][head scalar] [head column]

>.
>.<. <>.

<>.
<. <.

=.

<>.
<>.

=.

<>.
<>.
<.

Fig. 4.3 A Part of Precedence Relation of HNGG

graph = reduce(graph, ptable);
}

}

MarkedGraph reduce(
MarkedGraph graph,
PrecedenceTable ptable
){

MarkedGraph handle = seekForHandle(graph, ptable);
graph = replaceHandleToLeftHandSideOfProduction(

graph, handle);
return graph;

}

MarkedGraph replaceRightWithLeft(
MarkedGraph graph,

MarkedGraph handle){

moveHandleFormGraph(graph, handle);
Production production = searchProduction(handle);
makeDerivationTree(handle, production);
graph = embedLeftHandSideToGraph(

graph, production);
return graph;

}
2

5.2 ATTRIBUTE EVALUATION FOR LAY-
OUT

Layout problems of nested diagrams are solved by attribute
evaluation [4]. We use attributes which arex, y, width and
height. Symbolsx andy are used to calculatex coordinate

program name :
library code : version :

x

y

1 2
1
2

0

[innerstruct]

in
[head]

[head root]
in

HEAD

[head row]

[head root]
ov

[head column]

[]head
scalar []head

column
lf

0 0 2 2

[head column][head scalar]

[head scalar]

Program Name

Library Code

Version

0 0 2 2

0 0 2 2

0 0 2 1

0 1 2 1

0 0 2 1

0 0 2 1

0 1 1 1

1 1 1 1

1 1 1 1

0 1 2 1

[struct]

0 0

0 0

0 1

1 1

2 2

x y w h

0 0

w h

x y

x y

x y

x y

x y

[head row]
0 1 2 1

Fig. 5.1 A derivation tree (top) by HNGG with evaluated attribute
values and a form (bottom) drawn based on their values

andy coordinate, respectively. Andwidth andheightare
also used to calculate width and height, respectively. We
illustrate a process of an attribute evaluation in Fig. 5.1
The yield of the derivation tree of Fig.5.1(top) is a program
document shown in Fig 5.1(bottom). We have:

Proposition 2 Attributes in HNGG are evaluated in linear
time. 2

6 CONCLUSION

We proposed an attribute NCE graph grammar for tabu-
lar forms that are program documentation forms based on
ISO6592. This graph grammar is necessary in order to
form tabular forms and to develop a processing system of
tabular forms. This graph grammar can formalize with re-
spect to both the logical and visual structures. We note
that ISO6592 ANNEX documentation requires at most 280
productions with 1248 attribute rules.

Furthermore, we proposed a parsing algorithm of this

attribute graph grammar. This parser uses precedence re-
lations for effective parsing. We are now developing a
software documentation system utilizing our proposed ap-
proach in this paper.

Acknowledgments We thank Mr. S. Kanai’s advise in the
course of preparing the manusicript. We also thank to Mr.
K. Tomiyama and S. Nakagawa for valuable discussions.

References

[1] Reinhold Franck, A Class of Linearly Parsable Graph
Grammars,Acta Infomatica, 10, 1978, 175-201.

[2] G. Engels, R. Call, M. Nagl, et al., Software Specifi-
cation Using Graph Grammars,Computing, 31, 1983,
317-346.

[3] ISO6592-1985, Guidelines for The Documentation of
Computer-Based Application Systems, 1985.

[4] T. Nishino, Attribute Graph Grammars with Applica-
tions to Hichart Program Chart Editors,Advances in
Software Science and Technology, 1, 1989, 426-433.

[5] F. Haro, Graph Grammars and Their Application to
Computer Mathematics,Master’s Thesis, Tokai Uni-
versity, 1989 (in Japanese).

[6] Y. Adachi, K. Anzai, K. Tsuchida and T. Yaku, Hier-
archical Program Diagram Editor based on Attribute
Graph Grammar,Proc. IEEE COMPSAC, 21, 1996,
205-213.

[7] Grsegorz Rozenberg (Ed.),Handbook of Graph
Grammar and Computing by Graph Transformation,
World Scientific Publishing ,1997.

[8] G. Santucci and L. Tarantino, A Hypertabular Visual-
izer of Query Results,Proc. of the 1997 IEEE Symp.
Visual Language, 1997, 193-200.

[9] K. Sugita, Y. Adachi, Y. Miyadera, K. Tsuchida and
T. Yaku, Proc. of Advanced Software Mechanisms
for Computer-Aided Instruction information Literacy,
APEC-CIL’97, 1997, session 8–4.

[10] K. Sugita, A. Adachi, Y. Miyadera, K. Tsuchida and
T. Yaku, A Visual Programming Environment based
on Graph Grammars and Tidy Graph Drawing,Proc.
Internat. Conf. Software Engin. (ICSE ’98), 20-II,
1998, 74-79.

[11] A. Adachi, T. Tsuchida and T. Yaku, Program Visual-
ization Using Attribute Graph Grammars, CD-ROM
Book, IFIP World Computer Congress 98, (1998).

[12] T. Arita, K. Tomiyama, T. Yaku, Y. Miyadera, K.
Sugita, K. Tsuchida, Syntactic Processing of Dia-
grams by Graph Grammars,Proc. IFIP World Com-
puter Congress ICS2000, 2000, 145-151.

[13] T. Arita, A Precedence Attribute NCE Graph Gram-
mar for Hiform,
http://www.hichart.org/keyaki/archive/HC00–001/

