SYNTACTIC TABULAR FORM PROCESSING BY PRECEDENCE ATTRIBUTE GRAPH GRAMMARS

Tomokazu ARITA(Nihon Univ.)Kimio SUGITA(Tokai Univ.)Kensei TSUCHIDA(Toyo Univ.)Takeo YAKU(Nihon Univ.)

Abstract

Target

Project Code:	
Program Name:	
Library Code:	Version:
Author:	Original Release:
Approver:	Current Release:
Problem Description:	
Problem Supplementar (Theoretical Principles,	y Information Methods and References):
Problem Supplementar (Theoretical Principles, Problem Solution: 1 Conventions and Ter	y Information Methods and References): minology 2 Principles and Algorithms
Problem Supplementar (Theoretical Principles, Problem Solution: 1.Conventions and Ter	y Information Methods and References): minology 2.Principles and Algorithms
Problem Supplementar (Theoretical Principles, Problem Solution: 1.Conventions and Ter	y Information Methods and References): minology 2.Principles and Algorithms
Problem Supplementar (Theoretical Principles, Problem Solution: 1.Conventions and Ter	y Information Methods and References): minology 2.Principles and Algorithms
Problem Supplementar (Theoretical Principles, Problem Solution: 1.Conventions and Ter	y Information Methods and References): minology 2.Principles and Algorithms

Name	Туре	Size	G/L
х	int	2	G
у	float	4	L

Goal

To construct development methods of a Tabular Form Processing System.

Contents

- 1. Introduction
- 2. Program specification language
- 3. Attribute graph grammar
- 4. An Attribute Graph Grammar for Hiform.
- 5. Parsing of Precedence Attribute NCE Graph Grammar
- 6. Conclusions

1. Introduction

Background

Motivation

In mechanical documentation,

it is necessary to formally

define tabular forms and the drawing conditions.

Purpose

- To propose a model for forming tabular forms efficiently.
- To construct an application of this model for tabular forms.
- To investigate properties of this application.
- To propose an analyzing method of this application on computers.

Result

- To define an attribute NCE graph grammar.
- To formalize tabular forms based on an attribute NCE graph grammar.
- To show properties of the grammar for tabular forms.

context-free, precedence grammar 280 productions, 1248 attribute rules

To propose a parsing method for this grammar.

2. Program Documentation Language

A program specification language Hiform

- 17types of Forms based on ISO6592
- A collection of tabular forms

Project Code:		A 5
Program Name:	Program Specification-1	p
Library Code:	Version:	
Author:	Original Release:	
Approver:	Current Release:	
Problem Description:		
Problem Supplementary Informati (Theoretical Principles, Methods a	ion and References):	
Problem Solution: 1.Conventions and Terminology 2	Principles and Algorithms	

Nested Diagram and Its Corresponding Marked Graph

program name :	
subtitle :	
library code :	version :
author :	original release :
approver :	current release :

program name :					
subtitle :					
library code :	version :				
author :	original release :				
approver :	current release :				

3 Attribute NCE Graph Grammar

REVIEW

Definition 3.1.1 [7] An edNCE graph grammar : $G = (\Sigma, \Delta, \Gamma, \Omega, P, S)$,

where

- Σ : the alphabet of node labels,
- $\Delta \subseteq \Sigma$: the alphabet of $\underline{\mathsf{terminal}}$ node labels,
- Γ : the alphabet of edge labels,
- $\Omega \subseteq \Gamma$: the alphabet of <u>final</u> edge labels,
- P: the finite set of productions,
- $S \in \Sigma \Delta$: the initial nonterminal.

REVIEW

```
A production : X \to (D, C)
X \in \Sigma - \Delta,
D: a graph over the \Sigma and \Gamma,
C: the connection relation,
     C \subseteq \Sigma \times \Gamma \times \Gamma \times V_D \times \{in, out\}
     where V_D: a set of nodes on D.
```

Rewrite a graph by production

Our Result 1

Definition 3.1.2 An attribute NCE graph grammar : $AGG = \langle G, Att, F \rangle$ where 1. $G = (\Sigma, \Delta, \Gamma, \Omega, P, S)$: an underlying graph grammar of AGG. 2. $Att = \bigcup Att(Y)$, $Y \in V$ $(Att(Y) = Inh(Y) \cup Syn(Y)).$ 3. $F = \bigcup F_p$: $p \in P$ the set of semantic rules of AGG.

Production 'H5'

sub-derivation tree

3.2 Precedence Relations

Notation [cf. 1] For every $m \in \Gamma$ and $\forall \# \in \Sigma$ let

$$\doteq_m \stackrel{def}{=} \begin{cases} (A,B) & P \ni p : X \to (D,C), \\ \text{there is an edge } (x,y) \text{ on } D \\ \text{where } x \text{ is marked } A, \\ y \text{ is marked } B \text{ and} \\ (x,y) \text{ is labeled } m. \end{cases}$$

$$\rightarrow_{m} \stackrel{def}{=} \left\{ (A,B) \middle| \begin{array}{l} P \ni p : A \to (D,C), \\ C \ni (\#,m,m,x,in), \\ \text{and the mark of } x \text{ is } B. \end{array} \right\}$$

$$\leftarrow_{m} \stackrel{def}{=} \left\{ (B,A) \middle| \begin{array}{c} P \ni p : A \to (D,C), \\ C \ni (\#,m,m,y,out), \\ \text{and the mark of } y \text{ is } B. \end{array} \right\}$$

REVIEW

Notation [1] For every $m \in \Gamma$ let $<_m \stackrel{def}{=} \doteq_m \cdot \stackrel{+}{\rightarrow}_m,$ $>_m \stackrel{def}{=} \stackrel{+}{\leftarrow}_m \cdot \doteq_m,$ and $< >_m \stackrel{def}{=} \stackrel{+}{\leftarrow}_m \cdot \doteq_m, \cdot \stackrel{+}{\rightarrow}_m,$

where + denotes transitive closure.

Definition [1]

Precedence relations are *conflictless* if and only if for every $m \in \Gamma$ the relations $< m, \doteq m, > m$ and $< >_m$ are pairwise disjoint. \Box

 \Box

4 AN ATTRIBUTE GRAPH GRAMMAR FOR HIFORM

Our Result 2

 $\label{eq:Hiform Nested tabular form Graph Grammar} \\ HNGG = (G_N, Att_N, F_N) \text{,}$

where

$$\begin{split} G_N &= (\Sigma_N, \Delta_N, \Gamma_N, \Omega_N, P_N, S_N) \text{ s.t.} \\ \Sigma_N : \text{ node labels,} \\ \Delta_N &\subseteq \Sigma : \text{ for items of program specifications,} \\ \Gamma_N &= \{in, ov, lf\} : \text{ for relations between items,} \\ \Omega_N &= \Gamma_N \\ P_N : \text{ the finite set of productions,} \\ S_N &= [struct] \\ Att_N &= \{x, y, width, height\} \\ F_N : \text{ used for drawing tabular forms.} \end{split}$$

Productions of HNGG

Features of HNGG

GG	Туре	Rewriting Rule	Attribute Rule
HNGG	Context- free	280	1248

Our Result 3

Proposition

HNGG is a precedence graph grammar. **Proof.**

We construct 5376 precedence relations. The relations are shown to be pairwise disjoint.

Fig. A part of precedence relations of HNGG

Right	[hea	ad sca	alar]	[hea	ıd colu	ımn]	[he	ead ro	w]	[he	ead ro	ot]
Left 🔨	in	OV	lf	in	OV	lf	in	OV	lf	in	OV	lf
[head scalar]		\diamond	Ÿ		\diamondsuit	Ш·		\diamond			V	
[head column]		\diamond			\Diamond			\diamondsuit			Ÿ	
[head row]		Ä			Ä			Ä			÷	

5 Paring of Precedence Attribute Graph Grammars

Our Result 4. 5.1 Syntactic Analysis

The syntactic analysis is done by parsing of precedence graph language.

• use a precedence property.

How to use precedence rule

Derivation Tree

5.2 Attribute Evaluation

6 Conclusion

- We proposed an attribute NCE graph grammar for tabular forms based on ISO6592.
 - rewriting rule : logical structure
 attribute rule : visual structure

Graph Grammar	rewriting rules	attribute rules
HNGG	280	1248

We propose a parsing method by using precedence relations.

Our Result 4.

How to use precedence rule

