Bt edNCE 7 5 73EIT & 2R DBHIHRE

SIEET AmEAMT LHEEEY O RAMNRT

B

T R AR SCER RIS AR
156-8550 FAUHR A& XA oK 3-25-40
I BRPERSE LA G L2
350-8585 #r R JIBE i 2100
Email: § {tomiyama,arita,yaku}@am.chs.nihon-u.ac.jp
tkensei@krc.toyo.ac.jp

KoL, Y7 PO =T HBAREDS AT AT 47V 7 b 27 LR OWTEEREE L2 5272 LT
B, Fexld, [4] T T 7 IORICESREERIC KT AR IRRE 2w v FEEAL, [10] TROMIIEZEA LT,
ez, ZOWMICTHBAEOECRELZR S, =70, R, ~— I/ ERLEBRENTWEZ LICEET S,
T Ti, HEAHTE 2B LT, B edNCE 7T 7RI E S B SUHRIM M R ESE L w15, & BT,
WA BN DWW THESUIRE = < ORI E R~

WK T 0 7T, VT b TR, BT 70, BSR4

Syntactic Editing of Tabular Forms
by Attribute edNCE Graph Grammars

Kiyonobu Tomiyamal Tomokazu Arital Kensei Tsuchidat Takeo Yaku!

iDepartment of Applied Mathematics,College of Humanities and Sciences, Nihon University.
3-25-40, Sakurajosui, Setagaya, Tokyo, 156-8550
iDepartment of Information and Computer Sciences, Toyo University.
2100, Kujirai, Kawagoe, Saitama, 350-8585
Email: § {tomiyama,arita,yaku}@am.chs.nihon-u.ac.jp
tkensei@krc.toyo.ac.jp

Tabular forms such as program specification forms [10] are naturally formalized by the attribute graphs
[10], in which the attribute denotes locations of items and while the edge labels denotes relations between items.
Documents of the tabular forms are represented by graph grammars (e.g., see [10]). Accordingly, a syntactic
formalization of document editing provides the foundation for mechanical documentation. In this paper, first, we
formalize syntax directed editing methods by extention of the notion of Cornell Program Synthesizer[2] to attribute
edNCE graph grammars (cf.[4]). Next, we show the validity of our definition for editing a process under HNGG

[10] using the confluence of HNGG. Furthermore, we provide an examples.

Visual programming, software development, graph grammars, syntax directed editors

1 Introduction

Mechanical editing of tabular forms i1s one of the im-
portant issues in the software engineering methodol-
ogy. The Cornell Program Synthesizer (CPS) is well-
known and is often referred to as a structured and
text-based editor which uses an attribute grammar
successfully [2]. Tabular forms are represented by sev-
eral different models (e.g., Pane represents them by
[9]). We assigned each item in the tabular form to an
attributed node. This assignment naturally represents
the order of items and location of items in the tabular
form. Since the number of items in the form is gen-
erally infinite and the order of items has some valid
meaning, tabular forms are denoted by graph gram-
mars [10]. Accordingly, the mechanical editing of tab-
ular forms supposed to be executed by some syntactic
editing methods.

Program hame : hanoi
Subtitle :

Library code : ¢s-2000-02 | Version : 1.1

Author : K. Tomiyama QOriginal release :2000/6/10
Approver : Current release :2000/10/1
Key words : hanoi tower CR-code :

Scope : fundamental

Variant :

Language : C Software req. : gcc
Operation : Hardware req. :
References :

Function :

1. List and Explanation of Input Data. ...

Example :
1.Example of Operation

'HEAD,
no|mn OVi Subtitle
%V} [Cibrary Code] [Version |
P — @
ov ovi Author |If .IOriqinaI Release

OViIApproverI i . [Current Release |
It

1Y in [Keywords] [CRB-code]
—lew—o———————H% o

o} CScaps 1"

™

*
OV& . Software Reg.
B e —
Ovi Operation] . [Hardware Req.

ov If

! [Exampe]

Figure 1: Tabular form in Hiform document and its
corresponding graph

In this paper, we consider a programming documen-
tation Hiform as an example of the tabular forms. Hi-
form document is a collection of 17 types of the tabular
forms and includes all items defined in the guideline in

ISO6592 [3],[5]. Tt is to be noted that certain 1ISO6592
tabular forms are regarded as tabular forms, since they
have nested structures. Those tabular forms are repre-
sented by graphs. Fig.1 illustrates a Hiform document
and its corresponding graph. This graph is decided
as follows: (1) A node label of graph shows an item
of a tabular form. (2) An edge label shows relations
between items.

A mechanical processing of tabular forms supposed
to be realized effectively by syntactic manipulation of
graphs. In [10], the inner structure of each form in
Hiform is defined by an attribute edNCE graph gram-
mar.

The purpose of this paper is to extend CPS mecha-
nism to graph using results in [4][10] and to formalize
a syntactic editing mechanism for graphs, in this con-
nection some examples are given in consideration with
software documentation tabular forms. Definition is
made as to insertion and deletion in HNGG [10] so
that two manipulations are validly executed by the
confluence[6] of HNGG.

In Section 2, preliminary definitions are given. In
Section 3, a formal definition for editing mechanisms
are given, using composite production instance [4].
And we also show the validity of our definition using
confluency of HNGG. Section 4 1s devoted for conclud-
ing remarks.

2 Preliminaries

We review context-free edNCE graph grammars [6]
and an attribute edNCE graph grammar [10]. Tt is to
be noted that the edNCE graph grammar allows for
new edges to be established only between neighboring
nodes and embedded nodes as specified by connection
instructions in the embedding process.

2.1 EdNCE Graph Grammars [6]

A graph over alphabets ¥ and T is a 3-tuple H =
(V, E,A), where V is a finite nonempty set of nodes,
E CH{v,y,w) | v,w € Vv # w,y € T} is a set of
edges and A : V — X is a node labeling function. Let
Y. be an alphabet of node labels and I'" an alphabet of
edge labels.

The set of all concrete graphs over ¥ and T is de-
noted by G Rxr, and the set of all abstract graph is
denoted by [GRsr]. A subset of [(Rs 1] is called a
graph language. The set of all graphs with embedding
over 3 and I' is denoted by GREx r.

Definition An edNCE graph grammar is a 6-tuple
G=(Z,AT,Q P S), where ¥ is the alphabet of node
labels, A C X is the alphabet of terminal node la-
bels, T' is the alphabet of edge labels, Q C T is the
alphabet of final edge labels, P is the finite set of pro-
ductions and S € ¥ — A is the nitial nonterminal .

O

A production is denoted by the form p : X — (D, (),
where X € ¥ — A (D,C) € GRExr, D € GRxr
and C C X xT'x T'x Vp x {in,out}: connection re-
lation. Each element (4, 3,v,2,d) of C' (with § € X,
B,y € Ty x € Vp, d € {in,out}) is a connection in-
struction of (D, C). To improve readability, a connec-
tion instruction (4, 3,7, #, d) will always be written as
(0, 3/7,%,d). The following Fig.2 shows a production
of edNCE graph grammar.

[head
row head
lOV [cohunn]o

=

[cgﬁjan(lin |

[head
scalar l1

If
[head
ov column2

ov

[head
root

C={([head — row],ov/ov, 1,in), (7, in/in, 1, out),
([head — column],[f/1f,1,in),
([head — root],ov/ov, 1, 0ut)}

Figure 2: Production of edNCE graph grammar

The process of rewriting on an edNCE graph gram-
mar is defined through the notion of substitution, in
a standard theoretic language manner: Let sn(S.z)
denote the graph with a single S-labeled node z, no
edges, and empty connection relation. The graph lan-
guage generated by G 1s

L(G) & {[H]|H € GRaq and sn(S,z) =* H for

some z}.

2.2 Compositions of Production

Copies [4]

The composite representation of the production copies
of an edNCE graph grammar is a theoretical and
practical method for representing the graph-rewriting
rules for embedding sub-graphs of desired structures
into a graph.

Definition[4] Let ¢ = (X,AT,Q,P,S) be an
edNCE graph grammar. Let p; : X3 — (D1,Ch)
(D1 = (VDlaEDla/\Dl)) and Po Xy — (DQ,CQ)
(X5 = Ap, (u), D2 = (Vp,, Ep,,Ap,)) be production
copies of G. If w C Vp,, then a composite production
copy (with a connection relation) p : X3 — (D,C) is
defined as follows:

D is a graph as Vp = {Vp, — {u}} U Vp, about nodes.

C= {(O’,ﬁ/"}/,w,d) € Cl|w € VD1 - {U}}

U {(e,8/0yd)] 3 v € I, (0,8/v,ud) €
Cla (0’,"}//(5, Y, d) S CZ}

The composite production copy p composed by pq
and py, and denoted by p1 o ps.

O

The composite production copy pi o po is also called
definable in this case.

Proposition [4] 1: Each production is a composite
production copy. 2: p; and ps are production copies
and p; o po is definable. Then, p; o py is composite
production copy.

O

2.3 Confluence Property [6]

In general, the resulting graph of derivation based on
an edNCE graph grammar depends on the order by
which the production copies were applied.

The confluence property guarantees that the result
of a derivation shall not depend on the order of the
left applications of the production copies. Confluence
is a very important property because it guarantees the
validity of the left application of the composite produc-
tion copies. The confluency is also important in the
case of developing efficient parsing algorithms.

Definition [6] An edNCE graph grammar G = (X,
AT, Q, P, S) is dynamically confluent if the following
holds for every sentential form H of G:

if H =y, p, Hi Susp, Hiz and H =y, 5, Ha =4, 5,
Hoy (p1,p2 € P) are (creative) derivation of G with
Uy, ug € Vi and uq ;é us, thenHqo = Hoy.

O

2.4 Attribute edNCE Graph Gram-
mars [10]

We review an attribute graph grammar for the me-
chanical drawing. An attribute edNCE graph grammar
1s as follows.

Definition [10] An attribute edNCE Graph Grammar
is a 3-tuple AGG =< G, Att, F' > where

()G =(2,A,T,Q,P,S) is context-free edNCE graph
grammar, called an wunderlying graph grammar of
AGG. Each production p in P is denoted by p: X —
(D,C). Lab(D) denotes the set of all occurrences of
the node symbols labeling the nodes in the graph D.

(2) Each node symbol Y € ¥ of GG has two disjoint
finite sets Inh(Y) and Syn(Y) of inherited and syn-
thesized attributes, respectively. We denote the set
of all attributes of nonterminal node symbols Y by
Att(Y) = Inh(Y) U Syn(Y). Att = Uy oy AU(Y) is
called the set of attributes of AGG. We assume that

Inh(S) = ¢. An attribute a of Y is denoted by a(Y),
and a set of possible values for a is denoted by V(a).

(3) Associated with each production p : X, —
(D,C) € P, there exists a set F, of semantic
rules which define all the attributes in Syn(Xy) U
UYELab(D) Inh(Y). A semantic rule defining an at-
tribute ag(X;) has the form ag(X50) = fla1(X51),
" am(Xim))’ 0< Z] < |Lab()|’ X] € Lab()’
0 < j < m. Here |Lab(D)| denotes the cardinal-
ity of the set Lab(D), and f is a mapping from
Viar(X;1) X -+ X am (X)) into V(ag(X;y)). In this
situation, we say that ao(X;o) depends on a;(X;;) for
J,0<ji<minp. Theset F =) pF,is called the
set of semantic rules of AGG.

pEP

O

2.5 HNGG [10]

In this section, we consider an attribute edNCE
graph grammar. The grammar is called Hiform
Nested Graph Grammar (HNGG). HNGG = <
Gn, AN, Fny > that generates nested tabular forms
called Hiform form. Underlying graph grammar Gy
= (En, AN, TN, Qn, Py, Sn) is a context-free edNCE
graph grammar. The following Fig.3 illustrates pro-
ductions of HNGG.

struct]o

b, D [;1?5?

= X = X
BRNZ3
BRZZ

width(0) = width(2)
t

height(0) = height(2)
[innser- X(1) = x(0)+Mleft
e Jo y(1) = y(0)+Meop
p [head], | X(2) = X(0)+Mieft
2 T y(2) = y(0)+height(1)+Mcen
Tbody], | Width(0) = max(width(1), width(2))
z height(0) = height(1)+height(2)
+Mtop+tMcentMbottom
x(1) = x(0)
o [Cdumn]ox@):x«n+wwnu1wH3h
«lov y(1) = y(0)
D™k (&, y(2) = y(0)
H5 T F | head 1| width(0) =
g L column | width(1)+width(2)+Hsh
p— height(0) =
max(height(1), height(2))

Figure 3: Productions with semantic rules of HNGG

Proposition 2.2 [10] HNGG is precedence edNCE
graph grammar.

O
Proposition 2.3 [10] HNGG has confluence prop-

erty.
O

3 Editing of Nested Tabular
Form

In this section, we deal with a formal definition for
editing manipulation using production instance of
HNGG, and we also show the validity of our defini-
tion using confluency of HNGG.

3.1 Production Instance

We introduce editing manipulations in latter part.
The editing manipulations are exactly defined by pro-
duction instance as follows. In this part, we introduce
production instance.

A production instance (“instance” for short) is a 3-
tuple (w, p;, H,,), where

1. w € Vp,_, 1s anode removed during the derivation
D;_4 =, D;.

2. pi Xp, = (Hy,,C,p,) € Pis a production.

3. Hzln is an embedded graph isomorphic to Hy, dur-
ing D;_1q =, D;.
wH!
We denote D;_1 :>;: D; if D;_4 1s directly derived
D; by applying the instance (w,p;, H,).
If there is a production sequence p = (p1,---,pn) and
Instance (wl,pZ,H .) for each production p;, an in-
stance sequence is a sequence of ((wi,p1,H,), -,

(Wi, pns Hy).

3.2 Syntactic Insertion

In this part, we define the syntactic insertion, and de-
note the flow of insertion manipulation. This manip-
ulation is based on HNGG. Syntax directed editing is
executed by sequences of production instances.

le
Definition For an derivation sequence Dy =

wi—1 H! H! z+1H H’

Pi—1

P Wan n
=pios Dioa jp D; jp+1Jrl =" Dn (py
Xp, = (Hp,,Cp,),1 < j < n), we say that ¢ is
insertable (for p;) if there is an instance (w,q,Hy)

wH!
(¢ : Xg = (Hy,Cy) € Pn) such that D;_;=,Q and

wH'
if there 1s a derivation sequence such that D;_; :>;

w'H z+1le+1 wnH;)n ,)
Q :> ' D =i - =, Dy;. Farthermore, if a

productlon q: Xq — (Hy,Cy) is insertable for p;, and
any instance sequence applicable to 1J; can be applied
to Di, then ¢ is strictly insertable (for p;).

O

If a production ¢ Xy = (Hy, Cy) € Py is
stflictly insertable for p; : X,, — (H,,,Cp,) and
Ui=1 H,, N H; = ¢, then insertion of an instance
(w,q,Hy) into an instance sequence ((wi,p1, H),),
W, Pn, H! makes an instance sequence

s (wn,pn, Hy q

((Wl,Pl,) y ,(Wz'—l,Pi—bH;,,_l)) (w,q,H(;))
(wipi, H) -, (w,Pn, H},) which derives from
a graph D’ in the following step, where H =
(VH;,EH;,/\H;),W/EH(;,XM:/\H;(w/).

1. Trace the derivation sequence D, back to D;_1.

2. Apply the instance (w, ¢, H;) to D;_; , and obtain
the resultant graph @ .

3. Apply the instance sequence ((wf,pi,H,,),

(Z-I—lapl-l-laH ,+1)) (w;mpna H]/)n)) to Qa and
get the resultant graph D..

Inserting some instances into an instance sequence
bring a new item into existence. That is, they corre-
spond to a manipulation to insert a new item into a
permissible place in a Hiform document.

Definition In the same manner as the editing by the
instance for a production, we can further define in-
sertable by composite production copies.

O

Definition To insert a source graph A at edge x in a
target graph H is defined as follows.

1. A composite production copy ¢ for the graph A ex-
ists.

2. The composite production copy ¢ can be inserted
at the edge « in the graph H.

3. H — - = H': H'is the inserted graph which
inserts the graph A at the edge x in the graph H.

O

The following Fig.4 illustrates insertion process of the
editor.

3.3 Syntactic Deletion of Item

We define here the deletion of inner most item in the

form, that is a leaf node of the marked tree.
wi H!
Definition For a derivation sequence Dy :1>p1

wkH wH' zH wnH;)n

:>pk F =, D, :pl <o =" Dy, let a graph D,
be the first graph of the instance sequence in which a
node u € Vp, is brought into existence and the node
u 18 not applied to any production after that.

A production p : X, — (H,,C;) € Py such that
H, = (Vu,, Er,, Am,) is deletable if one of the fol-

lowing Assumptions 1 — 3 is met.

<Assumption 1>: For p € Py, there exists a pro-
duction p’ : X, — (Hp,Cpr) € Py such that H, =
(VHp' Eu,, /\Hp/) which satisfies the followings.

1. Xpr =X,

2. VHp’ = VH;’: —{u}

3. If f and g are isomorphic mappings such that
f: VH;’: — VHp

9 Vi, — sy = VH,,
then (o, 3/v,y,d) = (o, 8/7,9(y),d)

{

Conversion

{

Marked
Graph

1

Syntax
analysis

\

Target
Production
Sequence

/

Composition

{

Edited
Production
Sequence

{

Derivation

/

Syntax+AnaIysis
Attribute Evaluation

J

Figure 4: A process flow for an insertion of Hiform

editing system

Insertion Point,
Marked Graph

/

Syntax
analysis

'

Source
Production
Sequence

<Assumption 2>: Vg = {u,v} , X, = /\H;(v)

<Assumption 3>: w; ¢ HZ/,,Z <j<n
O

If a production p € Py is deletable, deletion
of an instance (w,p,H,) from an instance se-
quence L=((wi,p1, H}), (wk,px, Hy,) (w, p, H)
; (wip, Hy), o (wn,pa, Hy) makes an instance
sequence ((wi,p1, Hy,), -+ (Wi, P, H,,),

@ipn), o o L)) or (w191, HL),
: (wk s pe, 1,) (w,p' Hy)) (wi, o, Hy,)
v (W, pn, Hy) such that Hj, = (VH; —
{u},EH;I,/\H;I), which derives at a graph D! as

follows.

The case satisfying the Assumption 1:
1. Trace the derivation sequence D, back to F.

2. Apply the instance (w,p’, /) to F', so as to ob-
tain the resultant graph Dy,

. /
3. Apply the instance sequence ((wl,pl,le), e
(wn,pn, H,,)) to Dy, so as to obtain the resul-
tant graph DY,.

The case satisfying the Assumption 2:
1. Trace the derivation sequence D, back to F.

2. Rename the node w € Vp as v, so as to obtain the
resultant graph F’.

3. Apply the instance sequence ((w;,pi, Hp,) , -
(wn,pn, H,)) to F', so as to obtain the resultant
graph D,.

The case satisfying the Assumption 3:
1. Trace the derivation sequence D, back to F.

2. Apply the instance sequence ((w;,pi, Hy,) , -
(wWn,pn, H,) to F, so as to get the resultant
graph D,.

The deletion of an instance (w, p, H,) from an instance
sequence ((w1,p1,H),) -+, (Wn,pn, H},)) matches
pruning or replacement of a derivation tree.

Definition To delete a node A from a graph H is de-
fined as follows.

1. A production ¢ having a node A on the right hand
side exists.

2. The production ¢ is deletable in the instance se-
quence for graph H.

3. H— ' = H' . H is the deleted graph which

deletes the node A in the graph H.
O

3.4 Deletion of Blocked Items

We extend here deletion of a node (an item) defined
above to deletion of a subgraph (items) from the given
marked graph.

The deletion of the subgraph is defined by using the
removal of instance defined in the 3.3. Let D =
(Vp, Ep,Ap) be a graph. Let T C D be a subgraph.
Then, the deletion of the production about the deriva-
tion of T" has been performed as follows.

1. D' =D
2. Let T C D' be a subgraph

3. In derivation sequence Dy = --- = D', ¢ can be
removed from the production in T'

(a) If ¢ exists, the graph which removed ¢ from
the sequence, and then renew D’ and return
to 2

(b) Tt is finished if ¢ does not exist

3.5 Property of Editing Method

We can edit Hiform documents by simply using com-
posite production copies.

Next, we discuss properties of the editing method uti-
lized in the nested diagrams. We can show the follow-
ing.

Theorem 3.1 Deletion (insertion, block delition) in
HNGG is executed in linear time.

The following Theorem guarantees the effectiveness of
our definitions on editing.

Theorem 3.2 Let H be the graph obtained from G by
the deletion of nodes a and b in this ouder, in HNGG.
Let H’ be the graph obtained from G by the deletion of
nodes b and a in this order, in HNGG. Then, H = H'.

We have same proposition about insertion and block
deletion.

4 Conclusion

We are investigating detailed algorithm. We are in-
vestigating other edit manipulation that are a division
manipulation, a combination manipulation and so on.
Furthermore we are now developing a tabular form ed-
itor system by using this approach.

Acknowledgment

We thank Mr. §S. Kanai’s advise in the course of
preparing the manuscript.

We also thanks to Mr. S. Nakagawa and Mr. K. Ruise
for valuable discussions.

References

(1]

2]

[3]
[4]

[5]

[10]

[11]

Reinhold Franck, A Class of Linearly Parsable
Graph Grammars, Acta Infomatica 10, 175-201
(1978)

Tim Teitelbaum and Thomas Reps, The Cornell
Program Synthesizer: A Syntax-Directed Pro-
gramming Environment, Comm. ACM, Vol.24,
563-573, (1981).

I1S0O6592-1985, Guidelines for the Documentation
of Computer-Based Application Systems, (1985).
Y.Adachi, K.Anzai, et al. Hierarchical Program
Diagram Editor Based on Attribute Graph Gram-
mar, Proc. COMPSAC96, 205-213(1996).

K. Sugita, Y. Adachi, Y. Miyadera, K. Tsuchida
and T. Yaku, Advanced Software Mechanisms for
Computer-Aided Instruction in Information Lit-
eracy, APEC-CIL’97, (1997).

Grsegorz Rozenberg (Ed.), Handbook of Graph
Grammar and Computing by Graph Transforma-
tion,World Scientific Publishing(1997).

K. Sugita, A. Adachi, Y. Miyadera, K. Tsuchida
and T. Yaku, A Visual Programming Environ-
ment Based on Graph Grammars and Tidy Graph
Drawing, Proc. Internat. Conf. Software Engin.
(ICSE ’98) 20-11, 74-79 (1998).

A. Adachi, T. Tsuchida and T. Yaku, Program
Visualization Using Attribute Graph Grammars,
CD-ROM Book, IFIP World Computer Congress
98, (1998).

John F. Pane, Brad A. Myers, Tabular and Tex-
tual Methods for Selecting Objects from a Group,
Proc. 2000 IEEE Symp. on Visual Language, 157-
164, (2000).

T. Arita, K. Tomiyama, T. Yaku, Y. Miyadera,
K. Sugita, K. Tsuchida, Syntactic Processing of
Diagrams by Graph Grammars, Proc. IFIP WCC
ICS 2000,145-151 (2000).

T. Arita et al, A Precedence At-
tribute NCE Graph Grammar for Hiform,
Http://www hichart.org/keyaki/archive /HC00-
001

