
An XML Viewer for Tabular Forms for use with Mechanical
Documentation

Osamu Inoue and Kensei Tsuchida
Dept. Information & Computer Sciences

Toyo University
2100, Kujirai, Kawagoe

Saitama, 350-8585, Japan
email: inoue@tsu.cs.toyo.ac.jp, kensei@eng.toyo.ac.jp

Shun-ichi Nakagawa, Tomokazu Arita and Takeo Yaku
Dept. Computer Science & System Analysis

Nihon University
3-25-40, Sakurajosui, Setagaya

Tokyo, 156-8550, Japan
email: �nakagawa, arita, yaku�@am.chs.nihon-u.ac.jp

ABSTRACT
We deal with mechanical documentation in software devel-
opment tools. First, we review tabular forms for program
specification and their formal syntax by an attribute edNCE
graph grammar. Next we explain a parser based on the
syntactic definitions and attribute rules. Furthermore, we
introduce an XML viewer for tabular forms based on the
attribute graph grammar. Finally, we introduce a system
structure to construct the whole processing system for me-
chanical documentation. These results are applied to me-
chanical manipulation of general tabular forms.

KEY WORDS
software documentation, XML, visualization, attribute
graph grammars, tabular forms

1. INTRODUCTION

Mechanical documentation such as automatic drawing and
editing of program specification forms is one of the im-
portant problems in software development tools. Soft-
ware documentation includes tabular forms, such as pro-
gram specification forms, and diagrams, such as program
flowcharts. Furthermore, the tabular forms may be classi-
fied into: (1) nested-structured forms in which items are
linked hierarchically to one another; and (2) tessellation-
structured forms such as symbol tables and spread sheets.
This paper deals with (1) (that is, the nested-structured tab-
ular forms) together with their mechanical manipulating
problems.

In mechanical manipulation of tabular forms, it is
necessary to explicitly define both the syntax and draw-
ing conditions (cf. [3]). Attribute graph grammars formu-
late syntactic structure. They also formulate visual struc-
ture among items in forms, universally by syntax with at-
tribute rewriting rules. Franck [2] introduced precedence
graph grammars and applied them to nested program tab-
ular forms called PLAN2D. We formulated the hierarchi-
cally structured program tabular form [5, 8].

In 2000, we introduced part of a syntactic definition
of program specification forms based on ISO6592 standard

[7]. It is to be noted that those forms are represented by
attribute marked graphs. For this purpose, we employed
graph grammars. In this paper, we propose a universal pro-
cessing system for tabular forms. Accordingly, we employ
this system as the common models attribute NCE graph
grammars.

On the other hand, it is to be noted that XML is widely
recognized as one of the most influential standards con-
cerning data exchange and Web-presentations today. Since
XML is platform-independent [1], software documents ex-
pressed in XML are viewed and displayed on any readily
available Web browsers. Thus, documents expressed in the
form of XML can be shared with many other users, regard-
less of their computer environments. Here, we enhanced
our system in such a manner as to be able to generate XML
source codes of tabular forms by using the attribute edNCE
graph grammar as well as to check their grammatical cor-
rectness.

In Section 2, we review tabular forms for program
specification and a formal syntax of those forms by at-
tribute edNCE graph grammars. In Section 3, we also re-
view a parser for tabular forms, which provides a mechan-
ical verifier. In Section 4, we introduce an XML viewer
for tabular forms based on the attribute graph grammar. In
Section 5, we propose a syntactic processing system using
above methods. Section 6 provides concluding remarks.

2. TABULAR FORMS AND THEIR SYN-
TAX

In this section, we review the tabular forms for program
specification, by using some examples.

2.1 Tabular Forms for Program Specifica-
tion

We consider here a program specification language called
Hiform [7] based on ISO6592 [4].

The International Organization for Standardization is-

ProgramName :

Subtitle :

Library Code :
Author :

Approver :

Version :

Original Release :

Current Release :

Key Words : CR Code :

Scope :

Variants :

Language :

Operation : Interactive Batch RealTime()

Software Req. :

Hardware Req. :

References :

Function :1. List and Explanation of InputData or Parameters
 2. List and Explanation of OutputData or Result Values

Example :

General Document
A1

p

Figure 1. Hiform General Document form

sued a guideline in ISO6592 and described all items in pro-
gram documentation in Annexes A, B and C. We consid-
ered the ISO6592 items and introduced Hiform, which in-
cludes all items defined in these Annexes. Hiform [7] is
defined by 17 types of forms. Figure 1 shows a Hiform
General Document form.

The order among tabular forms was already defined
by a context-free string grammar [7]. The order and graph-
ical structure of cells inside tabular forms will be discussed
later.

ProgramName :

Subtitle :

Library Code : Version :

Author :

Approver :

Original Release :

Current Release :

FORM HEAD ProgramName

in in

ov

ov

ov

Subtitle

Library Code

ov

lf

lf

lf

Author

Approver

Version

Original Release

Current Release

Figure 2. Nested tabular form and its corresponding
marked graph

Hiform is characterized by graph grammars for graph
syntax and attribute rules for drawing conditions. In the
graph grammar of Hiform, a program form is represented
by a marked graph with locations. We illustrate examples
in Figure 2.

2.2 edNCE Graph Grammars [6]

The following provides a formal model of tabular forms.

Definition An edNCE graph grammar is a 6-tuple � �
��������� �� ���where � is the alphabet of node labels,
� � � denotes the alphabet of terminal node labels, �
is the alphabet of edge labels, � � � is the alphabet of
final edge labels, � is the finite set of productions and
� � � � � is the initial nonterminal. A production is
of the form X � �D�C� with X � ���, D is a graph over
the � and �, and C � � � � � � � �� � �in� out� is the
connection relation, where �� is a set of nodes on D. �

The type of Nested tabular forms (see Figure 2) plays an
important role in software documentation. We character-
ize it by the following Hiform Nested Graph Grammar
(HNGG).

2.3 HNGG [9, 10]

In this part, we consider an attribute edNCE graph gram-
mar which characterizes the Hiform documents. The gram-
mar is called Hiform Nested Graph Grammar (HNGG).
We consider an attribute edNCE graph grammar HNGG
� � �� � �� � �� � that generates nested tabular
forms in Hiform form. Underlying graph grammar ��
� ��� ��� ��� ��� � �� � �� � is an edNCE context-free
graph grammar.

The following Figure 3 illustrates productions of
HNGG. Each production has attribute rules for drawing in-
formation and generating XML source codes. The HNGG
includes 280 productions and 1528 attribute rules for the
definition of nested graph part such as the program form.

[head row]

[head root]

x(1) = x(0) x(2) = x(0)

y(1) = y(0) y(2) = y(0) + height(1)
width(0) = max(width(1) ,
 width(2))
height(0) = height(1) + height(2)

SXML (0) = SXML (1) SXML(2)

x(1) = x(0) x(2) = x(0) + width(1)

y(1) = y(0) y(2) = y(0)

width(0) = width(1) + width(2)

height(0) = max(height(1) ,
 height(2))
SXML (0) = SXML (1) SXML(2)

</node>

[head root]
0 := in

ov

ov

ov

in
1

2

[head scalar]

[head column]

[head column]
0 :=

ov,lf

in,ov

ov,lf 1

in,ov
2

lf

H2

H5

Figure 3. Productions of HNGG

3. PARSING OF HIFORM [13]

3.1 Precedence Graph Grammar [2, 10]

We have modified the Franck’s precedence relation [2] on
Franck’s context-free graph grammar and we hereby pro-
pose precedence relations on edNCE graph grammars for
efficient parsing. Let G be an edNCE grammar. Then,
precedence relations

	
�, ��, �� and � �� are determined

by a connection relation of each production of � .
We construct 5376 relations over the marks in HNGG as
shown in Figure 4. It is shown that the relations are pair-
wise disjoint. HNGG syntax has the precedence property
[2]. Then we can obtain the following property.

Property Grammar HNGG is a precedence graph
grammar [2]. Thus, the parsing algorithm of Hiform is
given by the Franck’s linear time parsing algorithm [9].

[head scalar]

[head column]

[head row]

Left
Right

in

< >
ov lf

< >

<

<
in

< >
ov lf

< >

<

in

< >
ov lf

< >

<

in

< >
ov lf

< >

[head scalar][head column] [head row] [head root]

=

=

Figure 4. A part of Precedence Realation of HNGG

3.2 Parsing Algorithm [2, 10, 13]

We describe here an outline of parsing algorithm (cf.
[2, 10, 13]).
The algorithm ’parser’ includes repetition of the algorithm
’reduce’ while an input graph to the algorithm ’reduce’ is
not a start graph of the graph grammar. The algorithm ’re-
duce’ principally consists of the following 3 steps.

1. It seeks for a handle in the graph inputted by an algo-
rithm ’seekForHandle’. A handle is found using the
precedence table.

2. The handle is replaced by a new node whose mark
is a left hand side of production for this handle, by
calling an algorithm ’replaceHandleToLeftHandSide-
OfProduction’.

3. ’reduce’ returns a graph replaced by a handle.

The algorithm ’replaceHandleToLeftHandSideOfProduc-
tion’ principally consists of the following 4 steps.

1. The handle is removed from the graph by calling
’moveHandleFromGraph’.

2. A production for the handle is searched by calling
’searchProduction’.

3. Derivation subtree is made by the handle and the pro-
duction by calling ’makeDerivationTree’.

4. A new node’s mark is the left hand side of the produc-
tion.

4. ATTRIBUTE EVALUATION AND XML
VIEWER

Layout problems can be solved by evaluation of attributes
[13]. We use attributes
, �, �
��� and ��
���. In ad-
dition, we introduce new attribute ���� which contains
XML source codes, as its value and representation corre-
sponding to the tabular forms. The attribute ���� is de-
fined by using a concatenation operator ’�’ and is computed
by referring to other attributes. The XML source codes are
generated by evaluating ����. Evaluation of attributes is
performed in the bottom-up manner. We illustrate a process
of evaluating the attributes in Figure 6.

First, by parsing for a marked graph, if the syntax
of the marked graph is correct, then the derivation tree is
generated. Next, by evaluating layout attributes for the
derivation tree, the derivation tree with layout information
is obtained. Then XML Viewer takes the derivation tree as
an input and computes corresponding XML source codes
by evaluating attributes of the derivation tree. Finally the
viewer displays the tabular forms by referring to the XSL
file pre-defined and using popular Web browser(e. g., IE).
The number of attribute rules concerning the XML is 280.
Figure 5 shows a processing flow of the parser and XML
viewer, and Figure 6 is a derivation tree with XML source
codes.

5. SYSTEM OVERVIEW

This system is constructed on a graph parsing engine for
Hiform. This engine is comprised of three parts, which are
(1) productions for tabular form syntax, (2) attribute rules
for calculating values of tabular form’s layout information
and (3) a precedence table for tabular form parsing.

Figure 7 illustrates the System Overview, and the Ta-
ble 1 shows the features of the system. An execution screen
of the XML viewer is shown in Figure 8 in the Appendix.

Editor under development
Drawer 3k lines

Parsing Engine 2k lines

Production 280 rules
Attribute Tree 1528 rules
Precedence Table 5376 relations

Table 1. Feature of our system

[struct]0

[innnerstruct]2

[head]3

[head root]5
HEAD

in

in

[head row]6

[head root]7

ov

[head column]8

[head scalar]9

Program Name

[head row]11

[head column]12

[head scalar]13
[head column]14

lf

[head scalar]16

Version

Library Code

1

10

15

17

<graph><node x="x(2)" y="y(2)"
 w="w(2)" h="h(2)">SXML(2)</graph>

SXML(3)</node>

<node x="x(3)" y="y(3)"
 w="w(3)" h="h(3)">SXML(5)</node>

SXML(6)SXML(7)

SXML(8)</node>

SXML(9)

<node x="x(9)" y="y(9)"
 w="w(9)" h="h(9)">

SXML(11)

SXML(12)</node>

SXML(16)

<node x="x(13)" y="y(13)"
 w="w(13)" h="h(13)">

<node x="x(16)" y="y(16)"
 w="w(16)" h="h(16)">

w h SXML

x y
w hx y

x y

x y

x y
x y

SXML(13)SXML(14)</node>

2 2

0 0
0 0 2 2

0 0

0 0 2 2

0 0 2 1

0 0 2 2

0 1 2 1

0 1 2 10 0 2 1

0 0 2 1

0 0

0 1

0 1 2 1

1 1

1 1 1 1

1 1 1 1

0 1

1 1

4

Figure 6. Derivation Tree with XML source codes

Input : MarkedGraph
(TabularForms)

Syntax
Analysis

Derivation
Tree

Attribute
Evaluation

DerivationTree
(with Layout Info.)

Attribute
Evaluation

DerivationTree
(with XML Source)

Browser(IE etc.)

Browsing
Tabular Forms

XSL Style Sheet

XML Attribute
Rules

Attribute Rules

Precedence Table

Graph Grammar

XML File

Figure 5. Processing Flow of the parser and XML viewer

System

Tabular Forms

Productions
(HNGG)

Attribute Rules
(HNGG)

Precedence Table
(HNGG)

Parsing Engine

Editor XML Viewer

Figure 7. System Overview

6. RELATED WORKS

Graph manipulating systems such as graph editors and
graph drawing systems using combinatorial and constraint
algorithms have been developed[6]. Along with the devel-
opment of the graph grammar theory, syntactic graph ma-
nipulating systems such as DIAGEN were also developed.
Among them, several large projects such as APPLIGRAPH
have been also developed. Nagl et al. introduced IPSEN
systems.

7. CONCLUSIONS

We defined an attribute edNCE graph grammar with 280
productions and 1528 attribute rules for ISO 6592 docu-
mentation with 137 items. We proposed syntactic tabular
form designing environment (cf. [9, 11, 12, 14]), based
on the attribute edNCE graph grammar. Then we devel-
oped XML viewer for tabular forms, which generates XML
source codes based on the grammar and displays tabular
forms with IE. Our whole system takes a marked graph as
input, verifies the syntax of it and displays it on a common
use Web browser. We are now developing a Syntax Editor.

ACKNOWLEDGEMENTS
We thank Mr. Kanai for his advise in the course of prepar-
ing the manuscript. We also thank Prof. Sugita for valuable
discussions.

References

[1] Extensible Markup Language (XML), The World Wide
Web Consortium (W3C),
http://www.w3.org/XML

[2] Reinhold Franck, A Class of Linearly Parsable Graph
Grammars, Acta Infomatica 10, 175-201 (1978)

[3] Tim Teitelbaum and Thomas Reps, The Cornell Pro-
gram Synthesizer: A Syntax-Directed Programming
Environment, Comm. ACM, Vol.24, 563-573, (1981).

[4] ISO6592-1985, Guidelines for the Documentation of
Computer-Based Application Systems, (1985).

[5] Y. Adachi, K. Anzai et al., Hierarchical Program Dia-
gram Editor Based on Attribute Graph Grammar, Proc.
COMPSAC96, 205-213(1996).

[6] Grsegorz Rozenberg (Ed.), Handbook of Graph Gram-
mar and Computing by Graph Transformation, World
Scientific Publishing(1997).

[7] K. Sugita, A. Adachi, Y. Miyadera, K. Tsuchida and
T. Yaku, A Visual Programming Environment Based
on Graph Grammars and Tidy Graph Drawing, Proc.
Internat. Conf. Software Engin. (ICSE ’98) 20-II, 74-
79 (1998).

[8] A. Adachi, T. Tsuchida and T. Yaku, Program Visu-
alization Using Attribute Graph Grammars, CD-ROM
Book, IFIP World Computer Congress 98, (1998).

[9] T. Arita, K. Tomiyama, T. Yaku, Y. Miyadera, K.
Sugita, K. Tsuchida, Syntactic Processing of Diagrams
by Graph Grammars, Proc. IFIP WCC ICS 2000,145-
151 (2000).

[10] T. Arita, A Precedence Attribute NCE Graph Gram-
mar for Hiform,
http://www.hichart.org/keyaki/archive/HC00-001

[11] K. Tomiyama et al., Syntactic Editing for Nested Tab-
ular Forms,
http://www.hichart.org/keyaki/archive/HC00-002

[12] T. Arita et al., A Context-Sensitive Attribute NCE
Graph Grammar for Tabular Form,
http://www.hichart.org/keyaki/archive/HC00-003

[13] T. Arita, K. Sugita, K. Tsuchida and T. Yaku, Syntac-
tic Tabular Form Processing By Precedence Attribute
Graph Grammar, Proc. IASTED AI 2001,pp.637-642
(2001)

[14] T. Arita, K. Tomiyama, K. Tsuchida and T. Yaku, Ap-
plication of Attribute NCE Graph Grammars to Syn-
tactic Editing of Tabular Forms, Electric Notes in The-
oretical Computer Science, Vol. 50, 3, (2001).

APPENDIX

Figure 8. The XML file which specified XSL is browsed
by Internet Explorer

