FXL : A Form Exchange Language of Modular Forms
for Program Specification Documents

Tomokazu ARITA? Shun-ichi NAKAGAWAT

TDept. Comput. Sci. & System Analysis, Nihon Univ.

Setagaya, 156-8550, Japan
{arita, nakagawa, yaku}@cssa.chs.nihon-u.ac.jp

Abstruct A detailed description of software sys-
tems by program specification documents is very
important to manage those systems. Tabular forms
for program specification documents are formalized
by a graph grammar for automatic processing of
detailed descriptions. However, standardized ex-
pression for handling tabular forms is not yet es-
tablished. In this paper, we propose a universal
code (which we call FXL) for tabular forms. FXL
has following characteristics:

(1) Syntax of FXL is defined by extended BNF.
Therefore, codes of FXL can be syntactically ver-
ified. (2) Codes of FXL are text-based codes.
Therefore, they can be edited directly. (3) FXL can
describe several attributes for tabular forms, which
are locations and positions of cells and geometrical
relations among cells.

keywords software documentation, visualization,
graph grammars, tabular forms

1 Introduction

Generally, software documentation includes pro-
gram specification documents and program struc-
ture diagrams. We deal with program specification
documents with tabular forms. So, it is necessary
to develop automatic drawing and editing mecha-
nism of them. This paper deals with general tabu-
lar forms and their mechanical manipulation prob-
lems.

In 1985, ISO6592 was issued as a guideline for
program documentation. There is all items for pro-
gram specification documents in ISO6592. How-
ever, ISO6592 does not include descriptions for doc-
ument styles. So, Hiform was proposed as tab-

Kensei TSUCHIDAt and Takeo YAKU?

ttDept. Inform. & Comput. Engin., Toyo Univ.
Kawagoe, 350-8585, Japan
kensei@eng.toyo.ac.jp

ular forms for program specification documents
based on ISO6592. As the characteristic of tabular
forms, tabular forms can include various descrip-
tion styles that are letters and diagrams such as
UML, Flowcharts etc. This paper deals with a tab-
ular form processing system. Both a syntactic defi-
nition of tabular forms and a definition for drawing
them are necessary for mechanical manipulation of
them. Here, attribute graph grammars formulate
syntactic structure of tabular forms. These gram-
mars also formulate visual structures among cells
in each form. Franck [1] introduced precedence
graph grammars and applied them to nested di-
agrams called PLAN2D. We formulated the hierar-
chical structured diagram [4, 7].

In the 1980s, Hichart, PAD, SPD, and HCP were
proposed as research of program diagrams. And H-
code2 of list form was proposed as internal code for
program diagrams. In 1995, DXL[3] was proposed
as a universal code of them and defined by BNF.
Recently, XML[11] is proposed in order to a univer-
sal format for structured documents. Furthermore
several types of formats based on XML is also pro-
posed such as XMI for UML, GXL for Graph and
SO on.

In 2000, we introduced partly a syntactic def-
inition of program specification forms based on
ISO6592 standard [8, 9]. We employed graph gram-
mars for formalizing those forms in [8]. In this pa-
per, we deals with a universal processing system
for tabular forms. We propose system overview,
and inner codes for marked graphs (called MGC).
Furthermore we also propose a data format FXL
for tabular forms based on MGC. This data for-
mat could be applied other modular tabular forms
such as symbol tables, specification forms etc. This

Program Name:

Subtitle:

Library Code: Version:

Author: Original Release:
Approver: Current Release:

Problem Description:

Problem Supplementary Information
(Theoretical Principles, Methods and References):

Problem Solution:
1.Conventions and Terminology 2.Principles and Algorithms

Figure 1: An Example of Hiform

paper is organized as follows.

In Section 2, we review tabular forms for pro-
gram specifications and a formal syntax of those
forms based on an attribute NCE graph grammar.
We introduce a parsing engine based on a graph
grammar. In Section 3, we introduce a syntactic
processing system and the file structures using a
parser for tabular forms, which provides mechani-
cal verifier and drawer. In Section 4, we propose a
file format for our tabular form processing system.
In Section 5, we summarize our results.

2 Preliminaries

In software development, description of its system
structure and algorithms is very important. We
review tabular forms for describing program spec-
ification concerning system development and man-
agement in this section. Furthermore, we also re-
view a mechanism for modeling tabular forms and
a system for analyzing those forms.

in l ’program name ‘

author

—_— > .
If

original release

Figure 2: Nested tabular form and its correspond-
ing marked graph

2.1 Tabular Forms
Specification

for Program

We consider here a program specification language
called Hiform [5] based on ISO6592 [2].

The International Organization for Standardiza-
tion issued a guideline in ISO6592 and described all
items in program documentation in Annexes A, B
and C. We considered the ISO6592 items and in-
troduced Hiform, which includes all items defined
in these Annexes. Hiform [6] is defined by 17 types
of forms. Figure 1 shows a Hiform program speci-
fication form. The order among tabular forms was
already defined by a context-free string grammar
(ct. [5])-

An arrangement of all items in a Hiform doc-
ument and drawing parameters of its document
are defined based on an attribute graph grammar.
This grammar is called Hiform Nested tabular form
Graph Grammar (HNGG). A Hiform document is
represented by a graph as Figure 2. A graph de-
notes a arrangement of all items in a document.
Information for drawing a form is obtained from
values of attributes with each item by analyzing a
graph for it based on HNGG.

A marked graph as in Figure 2 is defined as fol-
lows. A node label of the graph shows an item of a
tabular form. A node label called a mark. An edge
label shows relations between items. ‘If’ denotes
the meaning of ‘left of’. ‘ov’ denotes the meaning
of ‘over’. ‘in’ denotes the meaning of ‘within’.

DI

Figure 3: An Execution Screen of the Parsing En-
gine (Marked Graph)

2.2 HNGG [9][10]

Hiform documents is formalized based on a graph
grammar, which called HNGG. HNGG has some
characteristics as following: (1) HNGG’s produc-
tions is syntax of tabular forms. Productions are
used for deciding relations between items and struc-
ture of tabular forms. (2) HNGG is a precedence
graph grammar. HNGG has precedence relations
for efficient parsing. A precedence relation can be
used for supporting a search of a handle on syn-
tactic analysis. (3) HNGG has attribute rules. At-
tribute rules are used for calculating values for lay-
out information of tabular forms and XML source.
There are attributes for layout information such as
locations and sizes of items

These characteristics show that HNGG provides
the structure of tabular forms and drawing condi-
toin of them. Furthermore, editing manipulations
for tabular forms are proposed based on HNGG
[10].

2.3 Parsing Engine

Our parsing engine is constructed on two parts,
which are syntax analysis and attribute evaluation.
Input of this parsing engine is a marked graph, and
output is a derivation tree with attribute. In this
part, we explain an abstract parsing process.

The Figure 5 illustrates the parsing process.
First, by syntax analysis for a marked graph with
attribute, a derivation tree is generated. Our pars-
ing engine refers to not only productions but also
precedence tables. The marked graph is analyzed

Help:

Figure 4: An Execution Screen of the Parsing En-
gine (Derivation Tree)

efficiently by using precedence tables. Next, by at-
tribute evaluation for the derivation tree, an at-
tribute derivation tree is generated. The attribute
derivation tree has layout information. Tabular
form is generated with this flow by a viewer compo-
nent. Figure 3 and Figure 4 show execution screens.
The execution screens show a marked graph and its
derivation tree.

3 System Structure

3.1 System Overview

This system is constructed on a graph parsing en-
gine for Hiform. This engine is constructed on three
parts, which are productions for tabular form syn-
tax, attribute rules for calculating values of tab-
ular form’s layout information and precedence ta-
ble for tabular form parsing. We propose syntax-
directed editing mechanism based on a graph gram-
mar for tabular forms. Figure 6 illustrates the sys-
tem overview.

3.2 File Structure

A File format is called FXL(a Form eXchange Lan-
guage) which has graph structure. The FXL file is
an external file of MGC. DTC is generated from
MGC by syntax analysis and attribute evaluation.
A viewer shows a tabular form by the DTC. Fig-
ure 7 illustrates a file structure. This system has a
four components for data processing. Editor com-
ponents provides editing manipulation for tabular

Marked Graph Class

SyntaxAnalysis

Derivation Tree Class

l

Attribute Evaluation

Precedence Table
(HNGG)

Attribute Rules
(HNGG)

Derivation Tree Class
(with Layout Info.)

Figure 5: Parsing Process

2 =

\ Editor | Viewer |
§ f

| Parsing Engine |

Productions
(HNGG)

Figure 6: System Overview

Attribute Rules
(HINGG)

Precedence Relations
(HNGG)

form. This components edits marked graphs di-
rectly. Parsing Engine analyzes marked graphs and
generated derivation trees with attributes. Viewer
components generates XML files from derivation
trees for other systems. This XML file displays
other XML browsers by using XML style sheets
based on XSL. File converter generates FXL files
form marked graphs. Editor components and File
converter are not developed yet.

3.3 MGC and DTC

We developed a parsing engine by using Java lan-
guage. We provide several class files for 2 models

[File Converter |

Browser (IE etc.) — —
XML Style
= — Files
r XML Files 1 T

——m—m e
1 + 1
[Editor |l Viewer]

'
: E t 1
v Parsing Engine | !
: S T I S
T ~ . ! | Other Systems
1+ (Marked Graph Class) (Derivation Tree Class) !
1 (e lass) (Dert Hlass

- - - - '

H 1 3 1

'
H 1
H '
'

'

Figure 7: File Structure

hiformed.grammar |

MarkedGraph MGNode

-node : MGNode -In_s:MGNode -aft_x:int
-in_e:MGNode -aft_y:int
-If s:MGNode -att_width:int
-If_e:MGNode -att_height:int
-ov_s:MGNode -id:int
-ov_e:MGNode -name:String

+setStartNode(node:MGNode)

+getStartNode():MGNode

Figure 8: MGC: classes for the marked graph

based on a graph grammar. One model is a marked
graph. The other model is a derivation tree. This
parsing engine has several class files for construct-
ing marked graphs and derivation trees. The class
files for marked graphs are called MGC(Marked
Graph Class) and the class files for derivation trees
are called DTC(Derivation Tree Class).

A data of a marked graph is constructed by
MGC. The parsing engine analyzes the data and
makes a data of a derivation tree on DTC. Fur-
thermore, the parsing engine evaluates attributes
of the data of a derivation tree. A tabular form is
drawn based on these attributes.

3.4 The Data Structure of MGC

This parsing engine is implemented by Java Lan-
guage. Of course, the marked graph and the deriva-
tion tree is also implemented by Java Language.
Our package of Java provides Java classes for mod-

A B C
-0 -0
i I
ov
D E
®
I

Figure 9: a marked graph G

D An instance of
MarkedGraph
n =
' L] An instance of
v 1 MGNode
A L
Gr A Connection
-—— between
. MGNodes
in v v
ALt IBLI]C
7 7 v
ov
A A
D B if 1 E
V4| V4|

Figure 10: A data structure by MGC for G

eling our graph grammar.

The marked graph is implemented by using
MarkedGraph.class and MGNode.class (we called
MGC). Figure 8 illustrates classes for modeling
marked graphs. The marked graph is represented
by a list in our package. Figure 10 illustrates an
instance of MarkedGraph.class for a marked graph
in Figure 9.

4 Data Format

4.1 FXL

FXL(A Form eXchange Language) is a data format
of marked graph. FXL has following characteris-
tics:

0 1 X

I

0 i |program name
ov

author ‘ original release
Lz " >3
¥

v

Figure 11: A Graph for Description Example of
FXL

(1) Syntax of FXL is defined by extended BNF.
Therefore, codes of FXL can be syntactically
verified.

(2) Codes of FXL are text-based codes. Therefore,
they can be edited directly.

(3) FXL can describe several attributes for tabu-
lar forms, which are locations and positions of
cells and geometrical relations among cells.

Figure 11 is a graph representation for FXL. Ap-
pendix 1 shows an example of FXL description for
Figure 11. In Figure 11, the node 1 has a label
“program name”, the node 2 has a label “author”,
and the node 3 has a label “original release”. Simi-
larly, the edge (1, 2) has ID 1 and a label “ov”, and
the edge (2, 3) has ID 2 and a label “1f”.

4.1.1 Description of an Graph Part

Structure of a Graph Part

graph{
graphHeader {
date{ --- }
time{ --- }

graphName{ graph-name } }
nodeSet{ nodeObject{ --- }
nodeObject{ --- } --- }
edgeSet{ edgeObject{ - - }
edgeObject{ --- } -+ }

The description of a graph part consists of 3
blocks, graphHeader, nodeSet, and edgeSet.

The part of “graphHeader” describes whole
graph information. The part of “nodeSet” and
“edgeSet” describe information of nodes and edges,
respectively.

4.1.2 Description of a Node Part

Structure of a Node Part

nodeObject{

node{
nodeID{ ID_Number }
nodeX{ z }
nodeY{ y }

}

label{
labelString{ label_string }
cellSize{

cellWidth{ cell_width_inner }
cellHeight{ cell_height_inner }

}
cellLocation{
cellX{ cell_z_inner }
cellY{ cell_y_inner }
}

Information of a node is described in nodeObject
part. The description of a node part consists of 2
blocks, node and label.

The part of “node” describes information on one
node and information which accompanies its node.
The part of nodeID{ ID_Number } describes the
discernment information on the node. The part
of nodeX{ z } and the part of nodeY{ y } describe
x-coordinate and y-coordinates of the node, respec-
tively.

The part of “label” describes information on a
label which accompanies the node. The labelString{
label_string } describes a string for a label name.
The cellSize describes width and height of a cell
in a tabular form. And the cellLocation describes
coordinates of the cell in a tabular form.

4.1.3 Description of an Edge Part

Structure of an Edge Part
edgeObject{
edge{
edgelD{ { edge-ID } }
startNode{ { start_node } }
endNode{ { end_node } }
edgeShape{ { shape } }

}
label{

labelString{ label_string }
}

Information of an edge is described in edgeObject
part. The description of an edge part consists of 2
blocks, edge and label.

The part of “edge” describes information on one
edge and information which accompanies its edge.
The part of edgelD{ edge_ID } describes the dis-
cernment information on the edge. The part of
startNode{ start_node } and the part of endNode{
end_node } describe an ID number of the start node
and an ID number of the terminal node, respec-
tively.

The part of “label” describes information on a
label which accompanies the edge. The labelString{
label_string } describes a string for a label name.

5 Conclusion

We dealt with syntactic tabular form designing en-
vironment, based on attribute NCE graph gram-
mars. We proposed the system structure and the
file structures of the environment.

We constructed a universal format FXL for a tab-
ular form processing system. A file described by
FXL is able to represent the locations and sizes of
items in a tabular form. This data format could be
applied to other tabular form processing systems
and to modular tabular forms.

The size of graphs described by MGC is larger
than the size of graphs generated by HNGG. Fur-
thermore, The size of graphs described by FXL is
larger than MGC. In the future, the size of FXL
needs to correspond to the size of HNGG.

The development of parsing engine, editor, and

viewer based on this data format FXL is still re-
mained.

References

[1] Reinhold Franck, A Class of Linearly Parsable
Graph Grammars, Acta Infomatica 10, 175-201
(1978)

[2] ISO6592-1985, Guidelines for the Documenta-
tion of Computer-Based Application Systems,
(1985).

[3] Information technology-DXL : Diagram ex-
change language for tree—structured charts, JIS
X 0130 (1995).

[4] Y. Adachi, K. Anzai et al., Hierarchical Pro-
gram Diagram Editor Based on Attribute
Graph Grammar, Proc. COMPSAC96, 205-
213(1996).

[5] K. Sugita, Y. Adachi, Y. Miyadera, K. Tsuchida
and T. Yaku, Advanced Software Mechanisms
for Computer-Aided Instruction Information
Literacy, APEC-CIL’97, (1997).

[6] K. Sugita, A. Adachi, Y. Miyadera, K. Tsuchida
and T. Yaku, A Visual Programming Envi-
ronment Based on Graph Grammars and Tidy
Graph Drawing, Proc. Internat. Conf. Software
Engin. (ICSE ’98) 20-11, 74-79 (1998).

[7] A. Adachi, T. Tsuchida and T. Yaku, Program
Visualization Using Attribute Graph Gram-
mars, CD-ROM Book, IFIP World Computer
Congress 98, (1998).

[8] T. Arita, K. Tomiyama, T. Yaku, Y. Miyadera,
K. Sugita, K. Tsuchida, Syntactic Processing

of Diagrams by Graph Grammars, Proc. IFIP
WCC ICS 2000,145-151 (2000).

[9] Arita, T., K. Sugita, K. Tsuchida, T.
Yaku, Syntactic Tabular Form Processing by
Precedence Attribute Graph Grammars, Proc.
IASTED Applied Informatics 2001 (2001), 637-
642.

[10] T. Arita, K. Tomiyama, K. Tsuchida and T.
Yaku, Application of Attribute NCE Graph
Grammars to Syntactic Editing of Tabular

Forms, Electric Notes in Theoretical Computer
Science, Vol. 50, 3, (2001).

[11] Extensible Markup Language (XML),
The World Wide Web Consortium (W3C),
http://www.w3.org/XML

Appendix 1

header{

date{ 2000,11,24 }

time{ 0,0,0 }
application{ "HiformED", "version 0.0la" }
}

graph{
graphHeaderq{
date{ 2002,1,1 }
time{ 0,0,0 }
}

nodeSet{
nodeObject{
node{
nodeID{ 1 }
nodeX{ 0 }
nodeY{ 0 }
}
labelq{
labelString{ “ program name ” }
cellSize{
cellWidth{ 2 }
cellHeight{ 1 }
cellLocation{
cellX{ 0 }
cellY{ 0 }
}
}
nodeObjectq{
node{
nodeID{ 2 }
nodeX{ 0 }
node¥{ 1 }
}
labelq{
labelString{ “author ” }
cellSize{
cellWidth{ 1 }
cellHeight{ 1 }
cellLocation{
cellX{ 0 }
cellY{ 1 }

}
nodeObject{
node{
nodeID{ 3 }
nodeX{ 1 }
nodeY{ 1 }
}
labelq{
labelString{ “original release” }
cellSize{
cellWidth{ 1 }
cellHeight{ 1 }
celllLocation{
cellX{ 1 }
cellY{ 1 }
}
}
}

edgeSetq{
edgelObjectq{
edge{
edgeID{ 1 }
startNode{ 1 }
endNode{ 2 }
edgeShapes{‘ ‘arrow’’}
}
label{
labelString{ “ov” }
}
}
edgelObjectq{
edge{
edgeID{ 2 }
startNode{ 2 }
endNode{ 3 }
edgeShapes{‘ ‘arrow’’}
}
label{
labelString{ “1f " }
}
}
}
}

An Example of description of FXL

