File Structures for Modular
Form Processing Systems

by
Shun-ichi NAKAGAWA

A Thesis Submitted to
Earth Information Mathematical Sciences,
Graduate School of Integrated Basic Sciences,
Nihon University
in Fulfillment of the Requirements
of the Degree of Master of Science

March, 2002

Abstract

A detailed description of software systems by program specification docu-
ments is very important to manage those systems. Tabular forms for program
specification documents are formalized by a graph grammar for automatic
processing of detailed descriptions. However, standardized expression for
handling tabular forms is not yet established. In this paper, we propose a
universal code (which we call FXL) for tabular forms. FXL has following

characteristics:

(1) Syntax of FXL is defined by extended BNF. Therefore, codes of FXL can
be syntactically verified. (2) Codes of FXL are text-based codes. Therefore,
they can be edited directly. (3) FXL can describe several attributes for
tabular forms, which are locations and positions of cells and geometrical

relations among cells.

In this paper, we deal with a processing system of tabular form and a uni-

versal format of tabular forms for those processing system.

In Section 2 [17], we introduce methods and systems concerning to Hichart

program diagrams and Hiform program documentation.

In Section 3 [17, 19], we consider the whole structure of tabular form docu-
mentation system. First we design the system structure of the system. Then,
we design the file structure of the system. We note that ceratain intermidiate
language of tabular form is necessary for data exchange among tabular form

systems.

In Section 4, we deal with above intermediate language of tabular forms. We
first provide the concept of the intermidiate language [17]. Next, we provide
the specificatoin of the intermidiate language. We note that the class of
tabular forms described by the intermediate language is proper super class
of the class of tabular forms generated by Hiform graph grammar HNGG
13, 18].

In Appendix, we provide a specification manual of the intermidiate language.

Keywords software documentation, visualization, graph grammars, tabular

forms.

ii

Acknowledgments

I would like to express my greatest gratitudes for Professor Takeo YAKU at
Nihon University, who has been encouraging and advising me throughout my

whole study to complete this thesis.

I would also like to express thanks to Professor Kimio SUGITA at Tokai
University, Professor Kensei TSUCHIDA at Toyo University, and Professor
Youzou MIYADERA at Tokyo Gakugei University for their encouragements

and valuable suggestions.

I would also like to thank Tomokazu ARITA at Nihon Univerity, for I could

have fruitful discussions with him.

Shun-ichi NAKAGAWA

Earth Information Mathematical Sciences,
Graduate School of

Integrated Basic Sciences,

Nihon University

3-25-40 Sakura-jyosui, Setagaya-ku,
Tokyo 156-8550, JAPAN

iii

Contents

Chapter 1

Chapter 2
2.1
2.2
2.3

Chapter 3
3.1
3.2

Chapter 4
4.1
4.2
4.3
4.4

Chapter 5

Appendix

Abstract
Acknowledgments
Contents -

Introduction

Known Results
Tabular Forms for Program Specification
Parsing Engine Coe e

Classes for Marked Graphs and Derivation Trees -

System Structure
System Overview
File Structure

File Format

FXL - - -« -« « « . .
Description of a Graph Part
Description of a Node Part
Description of a Edge Part

Conclusion

Reference

List of Papers
List of Electronic Files

A Data Structure Description Format for

Graph and Modular Tabular Form
(in Japanese)

v

iii
v

oS w W

10
12

13
13
18
19
21

22

23

25

Chapter 1
Introduction

Generally, software documentation includes program specification documents
and program structure diagrams. We deal with program specification docu-
ments with tabular forms. So, it is necessary to develop automatic drawing
and editing mechanism of them. This paper deals with general tabular forms

and their mechanical manipulation problems.

Both a syntactic definition of tabular forms and a definition for drawing them
are necessary for mechanical manipulation of them. Here, attribute graph
grammars formulate syntactic structure of tabular forms. These grammars
also formulate visual structures among cells in each form. Franck [1] in-
troduced precedence graph grammars and applied them to nested diagrams
called PLAN2D. Applications based on some graph grammars are proposed
such as DiaGen[15], GenGed [16] and so on. In [8], table representations are
proposed. We formulated the hierarchical structured diagram [6, 12].

Recently, XML [21] is recognized as one of the most standards concerning
data exchange and web-based systems. Since XML is platform-independent,
software documents expressed in XML are viewed and displayed on any read-
ily available Web browsers. We are proposing and constructing an XML
system for program documents [19]. This system generates XML files for

program documents. These XML files are able to be displayed by combining

special XSL files on XML viewers or Web browsers such as Internet Explorer.

In the 1980s, Hichart, PAD, SPD, and HCP were proposed as research of
program diagrams. And H-code2 of list form etc was proposed as internal

code for program diagrams. In 1995, DXL [5] was proposed as a universal
code of them and defined by BNF.

In 2000, we introduced partly a syntactic definition of program specification
forms based on ISO6592 standard [13, 18]. We employed graph grammars
for formalizing those forms in [13]. In this paper, we propose a universal
processing system for tabular forms. Accordingly, we employ, as universal
models, attribute NCE graph grammars.

This thesis is organized as follows:
In Chapter 2, we review tabular forms for program specifications and a for-
mal syntax of those forms based on an attribute NCE graph grammar. We

introduce a parsing engine based on a graph grammar.

In Chapter 3, we introduce a syntactic processing system and the file struc-
tures using a parser for tabular forms, which provides mechanical verifier and

drawer.

In Chapter 4, we propose a file format for our tabular form processing system.

In Chapter 5, we summarize our reults.

In Appendix, we report a detailed description of the file format.

Chapter 2
Known Results

In software development, description of its system structure and algorithms
is very important. We review tabular forms for describing program spec-
ification concerning system development and management in this section.
Furthermore, we also review a mechanism for modeling tabular forms and a

system for analyzing those forms.

2.1 Tabular Forms for Program Specification

We consider here a program specification language called Hiform [9] based
on ISO6592 [2].

The International Organization for Standardization issued a guideline in
ISO6592 and described all items in program documentation in Annexes A,
B and C. Sugita et al considered the ISO6592 items and introduced Hiform,
which includes all items defined in these Annexes. Hiform [11] is defined
by 17 types of forms. Figure 1 shows a Hiform program specification form.
The order among tabular forms was already defined by a context-free string

grammar (cf. [9]).

An arrangement of all items in a Hiform document and drawing parameters
of its document are defined based on an attribute graph grammar. This
grammar is called Hiform Nested tabular form Graph Grammar (HNGG). A

Program Name;

Subtitle:

Library Code: Version:

Author: Original Release:
Approver; Current Release:

Problem Description:

Problem Supplementary Information
(Theoretical Principles, Methods and References):

Problem Solution:
1.Conventions and Terminology 2.Principles and Algorithms

Figure 1: An Example of Hiform

Hiform document is represented by a graph as Figure 2. A graph denotes a
arrangement of all items in a document. Information for drawing a form is
obtained from values of attributes with each item by analyzing a graph for
it based on HNGG.

A marked graph as in Figure 2 is defined as follows. A node label of the
graph shows an item of a tabular form. A node label called a mark. An edge

label shows relations between items. ‘lIf’ denotes the meaning of ‘left of’. ‘ov

denotes the meaning of ‘over’. ‘in’ denotes the meaning of ‘within’.

program name

author original release

Figure 2: Nested tabular form and its corresponding marked graph

2.2 Parsing Engine

Our parsing engine is constructed on two parts, which are syntax analysis
and attribute evaluation. Input of this parsing engine is a marked graph,
and output is a derivation tree with attribute. In this part, we explain an

abstract parsing process.

First, by syntax analysis for a marked graph with attribute, a derivation tree
is generated. Next, by attribute evaluation for the derivation tree, an at-
tribute derivation tree is generated. The attribute derivation tree has layout
information. Tabular form is generated with this flow by a browser compo-
nent. Figure 3 and Figure 4 show execution screens. The execution screens

show a marked graph and its derivation tree.

_ o) %]
File Edit Option Help
[/ Form | Marked Graph [Derivation Tree
Marked Graph Edit Editor Command
] 1 [ttemnsert
... i I tem Delete
I - | 0w
"~ : w Insel
= ‘| [0 Row Delete
\‘\\ l:\] 1 columnnsert
™~ [ZJ Column Delete
[S—R
- 8
EEE ; | Y

Figure 3: An Execution Screen of the Parsing Engine (Marked Graph)

=10l x|
File Edit Option Help
[/Form Marked Graph || Derivation Tree
Derivation Tree
7 pn 1 T -
LT 1 I L[1
[[I
L] L] [I E
N — N — T 1 T 1
Il Iy [I
] O | ‘
T 1 I N ——
I Iy [
I | I .
[T 1T L[1 [T 1
[[[
< v]

Figure 4: An Execution Screen

of the Parsing Engine (Derivation Tree)

2.3 Classes for Marked Graphs and Derivation Trees

We developed a parsing engine by using Java language. We provide several
class files for 2 models based on a graph grammar. Our model is a marked
graph. The another model is a derivation tree. This parsing engine has
several class files for constructing marked graphs and derivation trees. The
class files for marked graphs are called MGC(Marked Graph Class) and the

class files for derivation trees are called DTC(Derivation Tree Class).

A data of a marked graph is constructed by MGC. The parsing engine ana-
lyzes the data and makes a data of a derivation tree on DTC. Furthermore,
the parsing engine evaluates attributes of the data of a derivation tree. A
tabular form is drawn based on these attributes. The following Figure 5 il-

lustrates the parsing process.

Marked Graph Class

h 4

Syntax Analysis

l

Derivation Tree Class

/ '\

e
Sy

Productions

(HNGG)
\...________'__,..-f

P JE—
Precedence Table
(HNGG)

\

Attribute Evaluation

Derivation Tree Class
{(with Layout Info.)

Attribute Rules
(HNGG)

Figure 5: Parsing Process

Chapter 3
System Structure

Several file codes were proposed for diagrams. In 1997, H-Code2 [10] was
proposed as a file code for structured—diagrams Hichart. H-Code2 is speci-
died based on BNF. In 1995, DXL [5] was proposed for exchanging diagram
datas among diagram processing systems. Then DXL are applied to diagram

representations such as NS—charts, Hichart, flow—charts etc.

Furthermore, several codes were developed for documents contained tables
such as XML, HTML, MS—Excel files, TeX and so on. Some codes have

hierartical structures. But these codes do not have graph—structures.

Since we specified tabular forms as graphs, our system needs a code that is

able to represent graph strucuture naturally.

In this paper, we propose a tabular form code FXL based on graph structures.

10

3.1 System Overview [17, 19]

This system is constructed on a graph parsing engine for Hiform. This engine
is constructed on three parts, which are productions for tabular form syntax,
attribute rules for calculating values of tabular form’s layout information
and precedence table for tabular form parsing. We propose syntax-directed
editing mechanism based on a graph grammar for tabular forms. Figure 6

illustrates the system overview.

Tabular Forms

A

&

System

Editor Viewer

! 1

Parsing Engine

Productions Attribute Rules Precedence Relations
(HNGG) (HNGG) (HNGG)

Figure 6: System Overview

11

3.2 File Structure [17, 19]

A File format is called FXL(a Form eXchange Language) which has graph
structure. The FXL file is an external file of MGC. DTC is generated from
MGC by syntax analysis and attribute evaluation. A viewer shows a tabular
form by the DTC. Figure 7 illustrates a file structure.

Browser (IE etc.)
¥

XML Stvle Files

‘ E(lit{bl‘ ‘ ‘ \'igwer ‘
| I |

\ Parsing Engine

I

I

I

I

I

I

I

: Other Systems
' I

I

I

I

I

I

I

I

Y File Converter ¥ ‘

FXL Files

Figure 7: File Structure

Chapter 4

File Format

4.1 FXL [20]

FXL(A Form Exchange Language) is a file format of marked graph. FXL

has following characteristics:

(1) Syntax of FXL is defined by extended BNF. Therefore, codes of FXL

can be syntactically verified.

(2) Codes of FXL are text-based codes. Therefore, they can be edited
directly.

(3) FXL can describe several attributes for tabular forms, which are loca-

tions and positions of cells and geometrical relations among cells.

Figure 8 and following source list show an example of FXL description. In
Figure 8, the node 1 has a label “program name”, the node 2 has a label
“author”, and the node 3 has a label “original release”. Similarly, the edge
(1, 2) has ID 1 and a label “ov”, and the edge (2, 3) has ID 2 and a label
“If7.

Detailed description of FXL is reported in Appendix.

13

An Example of FXL Description

A J

0 1 & p rogram name e

oV

author original release

te

Figure 8: A Graph for Description Example of FXL

\\ FXL version0.0la

header{

date{ 2000,11,24 }

time{ 0,0,0 }
application{ "HiformED", "version 0.01a" }
}

graph{
graphHeader{
date{ 2002,1,1 }
time{ 0,0,0 }
}

nodeSet{

14

nodeObject{
nodeq{
nodeID{ 1 }
nodeX{ 0 }
nodeY{ 0 }
¥
nodeLabel{
labelString{ "program name" }
}
attributed{
cellSize{
cellWidth{ 2 }
cellHeight{ 1 }
T
cellLocation{
cellX{ 0 }
cellY{ O }
}
¥
cellColorq{
fontRGB{ 0, 0, 0 }
}
¥
nodeObject{
nodeq{
nodeID{ 2 }
nodeX{ 0 }
nodeY{ 1 }
}
nodelLabel{
labelString{ "author" }
¥
attributed{
cellSize{
cellWidth{ 1 }
cellHeight{ 1 }
T
cellLocation{
cellX{ 0 }
cellY{ 1 }
T
}
cellColor{

15

fontRGB{ 0, 0, 0 }
}
¥
nodeObject{
nodeq{
nodeID{ 3 }
nodeX{ 1 }
nodeY{ 1 }
}
nodelLabel{
labelString{ "original release" }
¥
attributed{
cellSize{
cellWidth{ 1 }
cellHeight{ 1 }
T
cellLocation{
cellX{ 1 }
cellY{ 1 }
T
}
cellColor{
fontRGB{ 0, 0, 0 }
¥
}

edgeSetq{
edgeObjectq{
edgeq{
edgeID{ 1 }
startNode{ 1 }
endNode{ 2 }
edgeShapes{ "arrow"
}
edgeLabelq{
labelString{ "ov" }
}
edgeColorq{
fontCMYK{ 0, 0, 0, 100 }
}
}
edgeObject{

16

edge{
edgeID{ 2 }
startNode{ 2 }
endNode{ 3 }
edgeShapes{ "arrow"

}

edgeLabelq
labelString{ "1f" }

}

edgeColorq{
fontCMYK{ 0, 0, 0, 100 }

}

}
}
+

FXL Source with the Structure of the Graph in Figure 8

17

4.2 Description of a Graph Part [20]

Structure of a Graph Part

graph{
graphHeader {
date{ --- }
time{ --- }
graphName{ graph_name }
}
nodeSet{ nodeObject{ - }
nodeObject{ --- } --- }
edgeSet{ edgeObject{ - -- }
edgeObject{ --- } --- }
}

The description of a graph part consists of 3 blocks, graphHeader, nodeSet,
and edgeSet.

The part of “graphHeader” describes whole graph information. The part of
“nodeSet” and “edgeSet” describe information of nodes and edges, respec-

tively.

18

4.3 Description of a Node Part [20]

Structure of a Node Part

nodeObject{
node{
nodelD{ ID_Number }
nodeX{ z }
nodeY{ y }
}
nodeLabel{
labelString{ label_string }
}
attribute{
cellSize{
cellWidth{ width }
cellHeight{ height }
}
cellLocation{
cellX{ z }
cellY{ y }
¥
¥
cellColor{
fontRGB{ R, G, B }
¥

Information of a node is descrived in nodeObject part. The description of a

node part consists of 2 blocks, node and label.

The part of “node” describes information on one node and information which

accompanies its node. The part of nodeID{ ID_Number } describes the dis-

19

cernment information on the node. The part of nodeX{ z } and the part of

nodeY{ y } describe x-coordinate and y-coordinates of the node, respectively.

The part of “nodeLabel” describes information on a label which accompanies
the node. The labelString{ label_string } describes a string for a label name.

The part of “attribute” describes information on attributes which accompa-
nies the node. The cellSize describes width and height of a cell in a tabular
form. And the cellLocation describes coordinates of the cell in a tabular

form.

20

4.4 Description of an Edge Part [20]

Structure of an Edge Part
edgeObject{
edge{
edgeID{ { edge ID } }
startNode{ { start_node } }
endNode{ { end_node } }
edgeShape{ { shape } }
}
edgeLabel{
labelString{ label_string }
}
edgeColor{
fontCMYK{ C, M, Y, K }

Information of an edge is descrived in edgeObject part. The description of

an edge part consists of 2 blocks, edge and label.

The part of “edge” describes information on one edge and information which
accompanies its edge. The part of edgeID{ edge_ID } describes the discern-
ment information on the edge. The part of startNode{ start_node } and the
part of endNode{ end_node } describe an ID number of the start node and

an ID number of the terminal node, respectively.

The part of “label” describes information on a label which accompanies the

edge. The labelString{ label_string } describes a string for a label name.

21

Chapter 5
Conclusion

We dealt with syntactic tabular form designing environment, based on at-
tribute NCE graph grammars. We proposed the system structure and the

file structures of the environment.

We constructed a universal format FXL for a tabular form processing system.
A file described by FXL is able to represent the locations and sizes of items
in a tabular form. This file format could be applied to other tabular form

processing systems.

In the future, we are planning the development of parsing engine, editor, and

viewer based on this file format FXL.

22

References

[1] Reinhold Franck, A Class of Linearly Parsable Graph Grammars, Acta
Infomatica 10, 175-201 (1978)

[2] ISO6592-1985, Guidelines for the Documentation of Computer-Based Ap-
plication Systems (1985).

[3] AV.=A R, R &> «,)D vi~wrEE FHE—R 2347 K
- i - Y —L, Y T R4 (1990)

[4] /NEFAR—H8t, H = — NS FEMEMNE ver. 5.0, Hichart #FFESE R} 91-04 (1991)

[5] Information technology—DXL : Diagram exchange language for tree—
structured charts, JIS X 0130 (1995).

[6] Y. Adachi, K. Anzai et al., Hierarchical Program Diagram Editor Based
on Attribute Graph Grammar, Proc. COMPSAC96, 205-213 (1996).

[7] Grsegorz Rozenberg (Ed.), Handbook of Graph Grammar and Computing
by Graph Transformation, World Scientific Publishing (1997).

[8] G. Santucci and L. Tarantino, A Hypertabular Visualizer of Query Re-
sults, Proc. of the 1997 IEEE Symp. Visual Language, 193-200 (1997).

[9] K. Sugita, Y. Adachi, Y. Miyadera, K. Tsuchida and T. Yaku, Advanced
Software Mechanisms for Computer-Aided Instruction Information Lit-
eracy, APEC-CIL’97 (1997).

[10] Youzou Miyadera, Takeo Yaku, Hideaki konya, An Expression Method
for Circulation od Tree-Structured Diagrams, BB KFEE TEERL
E vol.19 No.1, 41-59 (1997)

[11] K. Sugita, A. Adachi, Y. Miyadera, K. Tsuchida and T. Yaku, A Visual
Programming Environment Based on Graph Grammars and Tidy Graph
Drawing, Proc. Internat. Conf. Software Engin. (ICSE ’98) 20-II, 74-79
(1998).

23

[12] A. Adachi, T. Tsuchida and T. Yaku, Program Visualization Using
Attribute Graph Grammars, CD-ROM Book, IFIP World Computer
Congress 98 (1998).

[13] T. Arita, K. Tomiyama, T. Yaku, Y. Miyadera, K. Sugita, K. Tsuchida,
Syntactic Processing of Diagrams by Graph Grammars, Proc. IFIP WCC
ICS 2000,145-151 (2000).

[14] BEEF, 77 718+ 57— 2Rk 74—~ v b, 7T ~— | 2
E (2000).

[15] O. Koeth and M. Minas, Abstraction in Graph-Transformation Based
Diagram Editors, Electric Notes in Theoretical Computer Science vol.50,
3 (2001).

[16] R.Bardohls, T. Schultzke and G. Taentzer, Visual Language Parsing
in GenGEd, Electric Notes in Theoretical Computer Science, vol 50, 3
(2001).

[17] T. Arita, S. Nakagawa, K. Tomiyama, K. Tsuchida, T. Yaku, A Syntax
Directed Environment of Tabular Form Designing, ICSE 2001 (2001).

[18] T. Arita, K. Sugita, K. Tsuchida, T. Yaku, Syntactic Tabular Form
Processing by Precedence Attribute Graph Grammars, Proc. IASTED
Applied Informatics 2001, 637-642 (2001).

[19] O.Inoue, K. Tsuchida, S. Nakagawa, T. Arita, T. Yaku, An XML Viewer
for Tabular Forms for use with mechanical Documentation, TASTED
AT’02 (2002). (to appear)

[20] T. Arita, S. Nakagawa, K. Tsuchida, T. Yaku, A Universal File Structure
for Tabular Form Processing Systems, 585 5Bl 1 275 I 73 LU H
DYAT LZET DT —27 2y 7 SPA 02 (2002). (to appear)

[21] Extensible Markup Language (XML), The World Wide Web Consortium
(W3C), http://www.w3.org/XML.

24

List of Papers by Shun-ichi NAKAGAWA

1. T A Syntax Directed Environment of Tabular Form Designing
T. Arita, S. Nakagawa, K. Tomiyama, K. Tsuchida, and T. Yaku
ICSE 2001 (2001).

2. ¥ A Syntax Directed Environment of Tabular Form Processing
T. Arita, S. Nakagawa, K. Tomiyama, Y. Miyadera, K. Tsuchida, and
T. Yaku
B E#BETS 2001 Fi6 RE#EERUE (D-3-7), 35 (2001)

3. ¥ An XML Viewer for Tabular Forms for use with mechanical Docu-
mentation
O. Inoue, K. Tsuchida, S. Nakagawa, T. Arita, and T. Yaku
TASTED AI’02 (2002). (to appear)

4. ¥ An XML Viewer for Tabular Forms in Mechanical Documentation
O. Inoue, S. Nakagawa, T. Arita, T. Yaku, and K. Tsuchida
EFHFERBEREE V7 b= T VA T AFES, EFEHR, Vol.101,
No.629, 31-38 (2002).

5. ¥ FXL : A Form Exchange Language of Modular Forms for Program
Specification Documents
T. Arita, S. Nakagawa, K. Tsuchida, and T. Yaku
BEETa I I LV IBIOEHO VAT LMCET AV -7 v ay S
SPA ’02 (2002). (to appear)

[IE BURE E-1 'S

25

